Results 21 to 30 of about 368 (76)
We study the existence and regularity results for non-linear elliptic equation with degenerate coercivity and a singular gradient lower order term. The model problems is {-div(b(x)|∇u|p-2∇u(1+|u|)γ)+|∇u|p|u|θ=f,in Ω,u=0,on ∂Ω,\left\{ {\matrix{ { - div ...
Khelifi Hichem
doaj +1 more source
Stability Of contact discontinuity for steady Euler System in infinite duct [PDF]
In this paper, we prove structural stability of contact discontinuities for full Euler system.
arxiv +1 more source
Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions
In the present paper, we consider the following singularly perturbed problem:
Tang Xianhua, Chen Sitong
doaj +1 more source
Weighted critical exponents of Sobolev-type embeddings for radial functions
In this article, we prove the upper weighted critical exponents for some embeddings from weighted Sobolev spaces of radial functions into weighted Lebesgue spaces. We also consider the lower critical exponent for certain embedding.
Su Jiabao, Wang Cong
doaj +1 more source
On the uniqueness for weak solutions of steady double-phase fluids
We consider a double-phase non-Newtonian fluid, described by a stress tensor which is the sum of a p-Stokes and a q-Stokes stress tensor, with 1
Abdelwahed Mohamed+2 more
doaj +1 more source
Positive Solutions for Systems of Quasilinear Equations with Non-homogeneous Operators and Weights
In this paper we deal with positive radially symmetric solutions for a boundary value problem containing a strongly nonlinear operator. The proof of existence of positive solutions that we give uses the blow-up method as a main ingredient for the search ...
García-Huidobro Marta+2 more
doaj +1 more source
A Short Proof of Hölder Continuity for Functions in DeGiorgi Classes [PDF]
The goal of this note is to give an alternative proof of local H\"older continuity for functions in DeGiorgi classes based on an idea of Moser.
arxiv +1 more source
We investigate the behaviour of weak solutions of boundary value problems for quasi-linear elliptic divergence second order equations in unbounded domains. We show the boundedness of weak solutions to our problem.
Wiśniewski Damian
doaj +1 more source
Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation
In this article, we study the fractional critical Choquard equation with a nonlocal perturbation: (−Δ)su=λu+α(Iμ*∣u∣q)∣u∣q−2u+(Iμ*∣u∣2μ,s*)∣u∣2μ,s*−2u,inRN,{\left(-{\Delta })}^{s}u=\lambda u+\alpha \left({I}_{{\mu }^{* }}\hspace{-0.25em}{| u| }^{q}){| u|
Lan Jiali, He Xiaoming, Meng Yuxi
doaj +1 more source
Ground state solutions for the Hénon prescribed mean curvature equation
In this paper, we consider the analogous of the Hénon equation for the prescribed mean curvature problem in ℝN{{\mathbb{R}^{N}}}, both in the Euclidean and in the Minkowski spaces. Motivated by the studies of Ni and Serrin [W. M. Ni and J.
Azzollini Antonio
doaj +1 more source