Results 31 to 40 of about 416 (68)
On the uniqueness for weak solutions of steady double-phase fluids
We consider a double-phase non-Newtonian fluid, described by a stress tensor which is the sum of a p-Stokes and a q-Stokes stress tensor, with 1
Abdelwahed Mohamed +2 more
doaj +1 more source
Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions
In this note we present some uniqueness and comparison results for a class of problem of the form \begin{equation} \label{EE0} \begin{array}{c} - L u = H(x,u,\nabla u)+ h(x), \quad u \in H^1_0(\Omega) \cap L^{\infty}(\Omega), \end{array} \end{equation ...
Arcoya, David +3 more
core +2 more sources
Duality methods for a class of quasilinear systems
Duality methods are used to generate explicit solutions to nonlinear Hodge systems, demonstrate the well-posedness of boundary value problems, and reveal, via the Hodge-B\"acklund transformation, underlying symmetries among superficially different forms ...
Agarwal +21 more
core +1 more source
In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type {Au+g(x,u,∇u)=μ−div φ(u)in Ω,u=0on ∂Ω,\left\{ {\matrix{{Au + g\left( {x,u,\nabla u} \right) = \mu - div\,\phi \left( u \right)} \hfill &
Al-Hawmi Mohammed, Hjiaj Hassane
doaj +1 more source
Some remarks on sign changing solutions of a quasilinear elliptic equation in two variables [PDF]
We consider planar solutions to certain quasilinear elliptic equations subject to the Dirichlet boundary conditions; the boundary data is assumed to have finite number of relative maximum and minimum values.
Granlund, Seppo, Marola, Niko
core
Ground state solutions for the Hénon prescribed mean curvature equation
In this paper, we consider the analogous of the Hénon equation for the prescribed mean curvature problem in ℝN{{\mathbb{R}^{N}}}, both in the Euclidean and in the Minkowski spaces. Motivated by the studies of Ni and Serrin [W. M. Ni and J.
Azzollini Antonio
doaj +1 more source
We study the existence and regularity results for non-linear elliptic equation with degenerate coercivity and a singular gradient lower order term. The model problems is {-div(b(x)|∇u|p-2∇u(1+|u|)γ)+|∇u|p|u|θ=f,in Ω,u=0,on ∂Ω,\left\{ {\matrix{ { - div ...
Khelifi Hichem
doaj +1 more source
Weighted critical exponents of Sobolev-type embeddings for radial functions
In this article, we prove the upper weighted critical exponents for some embeddings from weighted Sobolev spaces of radial functions into weighted Lebesgue spaces. We also consider the lower critical exponent for certain embedding.
Su Jiabao, Wang Cong
doaj +1 more source
Well-posedness and stationary solutions [PDF]
In this paper we prove existence and uniqueness of variational inequality solutions for a bistable quasilinear parabolic equation arising in the theory of solid-solid phase transitions and discuss its stationary solutions, which can be ...
Burns, Martin, Grinfeld, Michael
core
Solvability of Parametric Elliptic Systems with Variable Exponents
In this paper, we study the solvability to the left of the positive infimum of all eigenvalues for some non-resonant quasilinear elliptic problems involving variable exponents.
Ouannasser Anass +1 more
doaj +1 more source

