Results 41 to 50 of about 368 (76)
In this paper we prove an existence result of multiple positive solutions for the following quasilinear problem:
Figueiredo Giovany M.+2 more
doaj +1 more source
Increasing variational solutions for a nonlinear $p$-laplace equation without growth conditions [PDF]
By means of a recent variational technique, we prove the existence of radially monotone solutions to a class of nonlinear problems involving the $p$-Laplace operator. No subcriticality condition (in the sense of Sobolev spaces) is required.
arxiv
We study of the regularizing effect of the interaction between the coefficient of the zero-order term and the lower-order term in quasilinear Dirichlet problems whose model ...
Arcoya David, Boccardo Lucio
doaj +1 more source
The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN{{\mathbb{R}}}^{N}, which involves a double-phase general variable exponent elliptic operator A{\bf{A}}.
Liu Jingjing, Pucci Patrizia
doaj +1 more source
Diffeomorphism-invariant properties for quasi-linear elliptic operators [PDF]
For quasi-linear elliptic equations we detect relevant properties which remain invariant under the action of a suitable class of diffeomorphisms. This yields a connection between existence theories for equations with degenerate and non-degenerate coerciveness.
arxiv
Two solutions for Dirichlet double phase problems with variable exponents
This paper is devoted to the study of a double phase problem with variable exponents and Dirichlet boundary condition. Based on an abstract critical point theorem, we establish existence results under very general assumptions on the nonlinear term, such ...
Amoroso Eleonora+3 more
doaj +1 more source
Uniqueness of ground states for a class of quasi-linear elliptic equations [PDF]
We prove the uniqueness of positive radial solutions for a class of quasi-linear elliptic problems containing, in particular, the quasi-linear Schrodinger equation.
arxiv
For the following quasilinear Choquard-type equation: −Δu−Δ(u2)u+V(x)u=(Iμ*∣u∣p)∣u∣p−2u,x∈RN,-\Delta u-\Delta \left({u}^{2})u+V\left(x)u=\left({I}_{\mu }* {| u| }^{p}){| u| }^{p-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N≥3 ...
Shen Zifei, Yang Ning
doaj +1 more source
On the stability of standing waves of Klein-Gordon equations in a semiclassical regime [PDF]
We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
arxiv
Existence of three solutions for two quasilinear Laplacian systems on graphs
We deal with the existence of three distinct solutions for a poly-Laplacian system with a parameter on finite graphs and a (p,q)\left(p,q)-Laplacian system with a parameter on locally finite graphs. The main tool is an abstract critical point theorem in [
Pang Yan, Zhang Xingyong
doaj +1 more source