Results 11 to 20 of about 1,022 (104)
On degenerate case of prescribed curvature measure problems
In this article, we prove the C1,1 estimate for solutions of prescribed curvature measure problems when the prescribed function may touch zero somewhere.
Qiu Guohuan, Suo Jingjing
doaj +1 more source
An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions [PDF]
We present a new, easy, and elementary proof of Jensen's Theorem on the uniqueness of infinity harmonic functions. The idea is to pass to a finite difference equation by taking maximums and minimums over small balls.Comment: 4 pages; comments added ...
A.M. Oberman+9 more
core +4 more sources
Phragm\'en-Lindel\"of theorem for infinity harmonic functions [PDF]
We investigate a version of the Phragm\'en-Lindel\"of theorem for solutions of the equation $\Delta_\infty u=0$ in unbounded convex domains. The method of proof is to consider this infinity harmonic equation as the limit of the $p$-harmonic equation when
Granlund, Seppo, Marola, Niko
core +2 more sources
A strong comparison principle for positive solutions of degenerate elliptic equations
A strong comparison principle (SCP, for brevity) is obtained for nonnegative weak solutions u ∈ W 1,p 0 (Ω) of the following class of quasilinear elliptic boundary value problems, (P ) −div(a(x,∇u))− b(x, u) = f(x) in Ω; u = 0 on ∂Ω. Here, p ∈ (1,∞) is a
M. Cuesta, P. Takáč
semanticscholar +1 more source
Flat solutions of the 1-Laplacian equation [PDF]
For every $f \in L^N(\Omega)$ defined in an open bounded subset $\Omega$ of $\mathbb{R}^N$, we prove that a solution $u \in W_0^{1, 1}(\Omega)$ of the $1$-Laplacian equation ${-}\mathrm{div}{(\frac{\nabla u}{|\nabla u|})} = f$ in $\Omega$ satisfies ...
Orsina, Luigi, Ponce, Augusto C.
core +3 more sources
Regularity results for p-Laplacians in pre-fractal domains
We study obstacle problems involving p-Laplace-type operators in non-convex polygons. We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal
Capitanelli Raffaela+2 more
doaj +1 more source
HOMOGENIZATION OF THE SYSTEM OF HIGH‐CONTRAST MAXWELL EQUATIONS
We study the system of Maxwell equations for a periodic composite dielectric medium with components whose dielectric permittivities have a high degree of contrast between each other. We assume that the ratio between the permittivities of the components with low and high values of is of the order , where is the period of the medium.
Kirill Cherednichenko, Shane Cooper
wiley +1 more source
Local and Global Existence of Strong Solutions to Large Cross Diffusion Systems
We study the solvability of a general class of cross diffusion systems and establish the local and global existence of their strong solutions under the weakest assumption that they are VMO.
Le Dung
doaj +1 more source
The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN{{\mathbb{R}}}^{N}, which involves a double-phase general variable exponent elliptic operator A{\bf{A}}.
Liu Jingjing, Pucci Patrizia
doaj +1 more source
[Retracted] Nonlinear eigenvalue problems in Sobolev spaces with variable exponent
We study the boundary value problem −div?((|?u|p1(x)−2 + |?u|p2(x)−2)?u) = f(x, u) in O, u = 0 on ?O, where O is a smooth bounded domain in RN. We focus on the cases when f±(x, ??u) = ±(−?|u|m(x)−2u + |u|q(x)−2u), where m(x)?max??{p12(x),p(x)}
Teodora-Liliana Dinu, George Isac
wiley +1 more source