On singular elliptic equations with measure sources [PDF]
We prove existence of solutions for a class of singular elliptic problems with a general measure as source term whose model is $$\begin{cases} -\Delta u = \frac{f(x)}{u^{\gamma}} +\mu & \text{in}\ \Omega, u=0 &\text{on}\ \partial\Omega, u>0 &\text{on}\
Oliva, Francescantonio+1 more
core +2 more sources
Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries [PDF]
In this work we study the behavior of a family of solutions of a semilinear elliptic equation, with homogeneous Neumann boundary condition, posed in a two-dimensional oscillating thin region with reaction terms concentrated in a neighborhood of the ...
Arrieta, José M.+2 more
core +3 more sources
Nonlinear singular problems with indefinite potential term
We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential operator plus an indefinite potential. In the reaction we have the competing effects of a singular term and of concave and convex nonlinearities.
Papageorgiou, Nikolaos S.+2 more
core +2 more sources
Spacetime singularity, singular bounds and compactness for solutions of the Poisson's equation
CarlosCesar ArandaBlue Angel Navire research laboratory,Rue Eddy 113 Gatineau, QC, Canadacarloscesar.aranda@gmail.comABSTRACTA black hole is a spacetime region in whose interior lies a structure known as a space-time singularity whose scientific ...
C. Aranda
semanticscholar +1 more source
The existence of positive solutions for Kirchhoff-type problems via the sub-supersolution method
In this paper we discuss the existence of a solution between wellordered subsolution and supersolution of the Kirchhoff equation. Using the sub-supersolution method together with a Rabinowitz-type global bifurcation theory, we establish the existence of ...
Yan Baoqiang+2 more
doaj +1 more source
On double phase Kirchhoff problems with singular nonlinearity
In this paper, we study multiplicity results for double phase problems of Kirchhoff type with right-hand sides that include a parametric singular term and a nonlinear term of subcritical growth.
Arora Rakesh+3 more
doaj +1 more source
An elliptic system with logarithmic nonlinearity
In the present paper, we study the existence of solutions for some classes of singular systems involving the Δp(x){\Delta_{p(x)}} and Δq(x){\Delta_{q(x)}} Laplacian operators. The approach is based on bifurcation theory and the sub-supersolution method
Alves Claudianor+2 more
doaj +1 more source
A semilinear problem with a W^{1,1}_0 solution
We study a degenerate elliptic equation, proving the existence of a W^{1,1}_0 distributional ...
Boccardo, Lucio+2 more
core +2 more sources
Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions [PDF]
We consider a second-order selfadjoint elliptic operator with an anisotropic diffusion matrix having a jump across a smooth hypersurface. We prove the existence of a weight-function such that a Carleman estimate holds true. We moreover prove that the conditions imposed on the weight function are necessary.
arxiv +1 more source
Singular quasilinear elliptic systems in $\mathbb{R}^N$
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauder's fixed point ...
Marano, S. A., Marino, G., Moussaoui, A.
core +1 more source