Results 31 to 40 of about 338 (66)
Asymptotic behavior and existence of solutions for singular elliptic equations [PDF]
We study the asymptotic behavior, as $\gamma$ tends to infinity, of solutions for the homogeneous Dirichlet problem associated to singular semilinear elliptic equations whose model is $$ -\Delta u=\frac{f(x)}{u^\gamma}\,\text{ in }\Omega, $$ where ...
Durastanti, Riccardo
core +2 more sources
A semilinear problem with a W^{1,1}_0 solution
We study a degenerate elliptic equation, proving the existence of a W^{1,1}_0 distributional ...
Boccardo, Lucio +2 more
core +2 more sources
Singular quasilinear elliptic systems in $\mathbb{R}^N$
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauder's fixed point ...
Marano, S. A., Marino, G., Moussaoui, A.
core +1 more source
Multiple Aharonov--Bohm eigenvalues: the case of the first eigenvalue on the disk
It is known that the first eigenvalue for Aharonov--Bohm operators with half-integer circulation in the unit disk is double if the potential's pole is located at the origin. We prove that in fact it is simple as the pole $a\neq 0$
Abatangelo, Laura
core +1 more source
Convexity Property of Finsler Infinity Harmonic Functions
In this paper, we investigate the convexity property of viscosity solutions to a homogeneous normalized Finsler infinity Laplacian equation. Weak and strong forms for convexity property have been addressed.
Benyam Mebrate, Sining Zheng
wiley +1 more source
On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole
We study the behavior of eigenvalues for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We analyse the leading term in the Taylor expansion of the eigenvalue function as the pole moves
Abatangelo, Laura, Felli, Veronica
core +1 more source
Structure Results for Semilinear Elliptic Equations with Hardy Potentials
We prove structure results for the radial solutions of the semilinear ...
Franca Matteo, Garrione Maurizio
doaj +1 more source
A uniqueness result for the fractional Schrödinger-Poisson system with strong singularity
This article considers existence of solution for a class of fractional Schrödinger-Poisson system. By using the Nehari method and the variational method, we obtain a uniqueness result for positive solutions.
Wang Li +4 more
doaj +1 more source
The Moving Plane Method for Doubly Singular Elliptic Equations Involving a First-Order Term
In this paper we deal with positive singular solutions to semilinear elliptic problems involving a first-order term and a singular nonlinearity. Exploiting a fine adaptation of the well-known moving plane method of Alexandrov–Serrin and a careful choice ...
Esposito Francesco, Sciunzi Berardino
doaj +1 more source
Let Ω be a bounded domain in with smooth boundary, and let 𝓧1; 𝓧2; · · ·, 𝓧m be points in Ω. We are concerned with the singular stationary non-homogenous q-Kuramoto-Sivashinsky eaquation (q-KSE:
Ouni Taieb +2 more
doaj +1 more source

