Results 41 to 50 of about 349 (74)
On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole
We study the behavior of eigenvalues for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We analyse the leading term in the Taylor expansion of the eigenvalue function as the pole moves
Abatangelo, Laura, Felli, Veronica
core +1 more source
Structure Results for Semilinear Elliptic Equations with Hardy Potentials
We prove structure results for the radial solutions of the semilinear ...
Franca Matteo, Garrione Maurizio
doaj +1 more source
The Moving Plane Method for Doubly Singular Elliptic Equations Involving a First-Order Term
In this paper we deal with positive singular solutions to semilinear elliptic problems involving a first-order term and a singular nonlinearity. Exploiting a fine adaptation of the well-known moving plane method of Alexandrov–Serrin and a careful choice ...
Esposito Francesco, Sciunzi Berardino
doaj +1 more source
Let Ω be a bounded domain in with smooth boundary, and let 𝓧1; 𝓧2; · · ·, 𝓧m be points in Ω. We are concerned with the singular stationary non-homogenous q-Kuramoto-Sivashinsky eaquation (q-KSE:
Ouni Taieb+2 more
doaj +1 more source
This paper establishes pointwise estimates up to boundary for the gradient of weak solutions to a class of very singular quasilinear elliptic equations with mixed ...
Do Tan Duc+2 more
doaj +1 more source
In this paper, we give a priori estimates near the boundary for solutions of a degenerate elliptic problems in the general Besov-type spaces Bp,qs,τ$B_{p,q}^{s,\tau }$, containing as special cases: Goldberg space bmo, local Morrey-Campanato spaces l2,λ ...
El Baraka Azzeddine, Masrour Mohammed
doaj +1 more source
We give pointwise gradient bounds for solutions of (possibly non-uniformly) elliptic partial differential equations in the entire Euclidean space. The operator taken into account is very general and comprises also the singular and degenerate nonlinear ...
Cavaterra, Cecilia+4 more
core +1 more source
On semilinear elliptic equations with borderline Hardy potentials [PDF]
In this paper we study the asymptotic behavior of solutions to an elliptic equation near the singularity of an inverse square potential with a coefficient related to the best constant for the Hardy inequality.
Felli, Veronica, Ferrero, Alberto
core
The Dirichlet problem for fully nonlinear degenerate elliptic equations with a singular nonlinearity
We investigate the homogeneous Dirichlet problem in uniformly convex domains for a large class of degenerate elliptic equations with singular zero order term.
Birindelli, Isabeau, Galise, Giulio
core +1 more source
Analysis of a turbulence model related to that of k-epsilon for stationary and compressible flows [PDF]
We shall study a turbulence model arising in compressible fluid mechanics. The model called $\theta - \phi$ we study is closely related to the k-epsilon model.
Dreyfuss, Pierre
core +2 more sources