Results 41 to 50 of about 364 (74)
The Dirichlet problem for fully nonlinear degenerate elliptic equations with a singular nonlinearity
We investigate the homogeneous Dirichlet problem in uniformly convex domains for a large class of degenerate elliptic equations with singular zero order term.
Birindelli, Isabeau, Galise, Giulio
core +1 more source
Structure Results for Semilinear Elliptic Equations with Hardy Potentials
We prove structure results for the radial solutions of the semilinear ...
Franca Matteo, Garrione Maurizio
doaj +1 more source
Fractional Dirichlet problems with singular and non-locally convective reaction
In this article, the existence of positive weak solutions to a Dirichlet problem driven by the fractional (p,q)\left(p,q)-Laplacian and with reaction both weakly singular and non-locally convective (i.e., depending on the distributional Riesz gradient of
Gambera Laura, Marano Salvatore A.
doaj +1 more source
The Moving Plane Method for Doubly Singular Elliptic Equations Involving a First-Order Term
In this paper we deal with positive singular solutions to semilinear elliptic problems involving a first-order term and a singular nonlinearity. Exploiting a fine adaptation of the well-known moving plane method of Alexandrov–Serrin and a careful choice ...
Esposito Francesco, Sciunzi Berardino
doaj +1 more source
Let Ω be a bounded domain in with smooth boundary, and let 𝓧1; 𝓧2; · · ·, 𝓧m be points in Ω. We are concerned with the singular stationary non-homogenous q-Kuramoto-Sivashinsky eaquation (q-KSE:
Ouni Taieb +2 more
doaj +1 more source
In this paper, we give a priori estimates near the boundary for solutions of a degenerate elliptic problems in the general Besov-type spaces Bp,qs,τ$B_{p,q}^{s,\tau }$, containing as special cases: Goldberg space bmo, local Morrey-Campanato spaces l2,λ ...
El Baraka Azzeddine, Masrour Mohammed
doaj +1 more source
This paper establishes pointwise estimates up to boundary for the gradient of weak solutions to a class of very singular quasilinear elliptic equations with mixed ...
Do Tan Duc +2 more
doaj +1 more source
On semilinear elliptic equations with borderline Hardy potentials [PDF]
In this paper we study the asymptotic behavior of solutions to an elliptic equation near the singularity of an inverse square potential with a coefficient related to the best constant for the Hardy inequality.
Felli, Veronica, Ferrero, Alberto
core
Analysis of a turbulence model related to that of k-epsilon for stationary and compressible flows [PDF]
We shall study a turbulence model arising in compressible fluid mechanics. The model called $\theta - \phi$ we study is closely related to the k-epsilon model.
Dreyfuss, Pierre
core +2 more sources
Multiplicity of k-convex solutions for a singular k-Hessian system
In this article, we study the following nonlinear kk-Hessian system with singular weights Sk1k(σ(D2u1))=λb(∣x∣)f(−u1,−u2),inΩ,Sk1k(σ(D2u2))=λh(∣x∣)g(−u1,−u2),inΩ,u1=u2=0,on∂Ω,\left\{\begin{array}{ll}{S}_{k}^{\frac{1}{k}}(\sigma ({D}^{2}{u}_{1}))=\lambda ...
Yang Zedong, Bai Zhanbing
doaj +1 more source

