Results 51 to 60 of about 350 (69)
Elliptic Equations with Hardy Potential and Gradient-Dependent Nonlinearity
Let Ω⊂ℝN{\Omega\subset\mathbb{R}^{N}} (N≥3{N\geq 3}) be a C2{C^{2}} bounded domain, and let δ be the distance to ∂Ω{\partial\Omega}. We study equations (E±){(E_{\pm})}, -Lμu±g(u,|∇u|)=0{-L_{\mu}u\pm g(u,\lvert\nabla u\rvert)=0} in Ω, where Lμ=Δ+μδ2 ...
Gkikas Konstantinos T., Nguyen Phuoc-Tai
doaj +1 more source
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
In this note, we prove that the kernel of the linearized equation around a positive energy solution in ℝn${\mathbb{R}^{n}}$, n≥3${n\geq 3}$, to the problem -ΔW-γ|x|-2V=|x|-sW2⋆(s)-1$-\Delta W-\gamma|x|^{-2}V=|x|^{-s}W^{2^{\star}(s)-1}$ is one ...
Robert Frédéric
doaj +1 more source
On Cauchy–Liouville-type theorems
In this paper we explore Liouville-type theorems to solutions of PDEs involving the ϕ-Laplace operator in the setting of Orlicz–Sobolev spaces. Our results extend Liouville-type theorems that have been obtained recently.
Araya Ataklti, Mohammed Ahmed
doaj +1 more source
We study the semilinear elliptic ...
Ghergu Marius+2 more
doaj +1 more source
The trace space of anisotropic least gradient functions depends on the anisotropy. [PDF]
Górny W.
europepmc +1 more source
Multiplicity of k-convex solutions for a singular k-Hessian system
In this article, we study the following nonlinear kk-Hessian system with singular weights Sk1k(σ(D2u1))=λb(∣x∣)f(−u1,−u2),inΩ,Sk1k(σ(D2u2))=λh(∣x∣)g(−u1,−u2),inΩ,u1=u2=0,on∂Ω,\left\{\begin{array}{ll}{S}_{k}^{\frac{1}{k}}(\sigma ({D}^{2}{u}_{1}))=\lambda ...
Yang Zedong, Bai Zhanbing
doaj +1 more source
Uniqueness of solutions to singular p-Laplacian equations with subcritical nonlinearity
We present a geometric approach to the study of quasilinear elliptic p-Laplacian problems on a ball in ℝn${\mathbb{R}^{n}}$ using techniques from dynamical systems.
Maultsby Bevin
doaj +1 more source
Mass and Extremals Associated with the Hardy–Schrödinger Operator on Hyperbolic Space
We consider the Hardy–Schrödinger operator Lγ:=-Δ𝔹n-γV2{L_{\gamma}:=-\Delta_{\mathbb{B}^{n}}-\gamma{V_{2}}} on the Poincaré ball model of the hyperbolic space 𝔹n{\mathbb{B}^{n}} (n≥3{n\geq 3}).
Chan Hardy+4 more
doaj +1 more source
Analysis of positive solutions for classes of quasilinear singular problems on exterior domains
We consider the ...
Chhetri Maya+2 more
doaj +1 more source
In the present paper we study the Dirichlet problem for an equation involving the 1-Laplacian and a total variation term as reaction.We prove a strong multiplicity result.
Abdellaoui Boumediene+2 more
doaj +1 more source