Results 1 to 10 of about 551 (71)

Gradient and Lipschitz estimates for tug-of-war type games

open access: yes, 2020
We define a random step size tug-of-war game, and show that the gradient of a value function exists almost everywhere. We also prove that the gradients of value functions are uniformly bounded and converge weakly to the gradient of the corresponding $p ...
Attouchi, Amal   +2 more
core   +1 more source

The Kellogg property and boundary regularity for p-harmonic functions with respect to the Mazurkiewicz boundary and other compactifications

open access: yes, 2018
In this paper boundary regularity for p-harmonic functions is studied with respect to the Mazurkiewicz boundary and other compactifications. In particular, the Kellogg property (which says that the set of irregular boundary points has capacity zero) is ...
Björn, Anders
core   +1 more source

Stability of eigenvalues for variable exponent problems

open access: yes, 2015
In the framework of variable exponent Sobolev spaces, we prove that the variational eigenvalues defined by inf sup procedures of Rayleigh ratios for the Luxemburg norms are all stable under uniform convergence of the exponents.Comment: 10 ...
Colasuonno, Francesca, Squassina, Marco
core   +1 more source

A quasilinear problem with fast growing gradient

open access: yes, 2012
In this paper we consider the following Dirichlet problem for the $p$-Laplacian in the positive parameters $\lambda$ and $\beta$: [{{array} [c]{rcll}% -\Delta_{p}u & = & \lambda h(x,u)+\beta f(x,u,\nabla u) & \text{in}\Omega u & = & 0 & \text{on}\partial\
Bueno, Hamilton, Ercole, Grey
core   +1 more source

A note on the classification of positive solutions to the critical p-Laplace equation in Rn ${\mathbb{R}}^{n}$

open access: yesAdvanced Nonlinear Studies
In this note, we obtain a classification result for positive solutions to the critical p-Laplace equation in Rn ${\mathbb{R}}^{n}$ with n ≥ 4 and p > p n for some number pn∈n3,n+13 ${p}_{n}\in \left(\frac{n}{3},\frac{n+1}{3}\right)$ such that pn∼n3+1n $
Vétois Jérôme
doaj   +1 more source

Singular quasilinear elliptic systems in $\mathbb{R}^N$

open access: yes, 2018
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauder's fixed point ...
Marano, S. A., Marino, G., Moussaoui, A.
core   +1 more source

A-priori bounds for quasilinear problems in critical dimension

open access: yesAdvances in Nonlinear Analysis, 2019
We establish uniform a-priori bounds for solutions of the quasilinear ...
Romani Giulio
doaj   +1 more source

Some remarks on sign changing solutions of a quasilinear elliptic equation in two variables [PDF]

open access: yes, 2012
We consider planar solutions to certain quasilinear elliptic equations subject to the Dirichlet boundary conditions; the boundary data is assumed to have finite number of relative maximum and minimum values.
Granlund, Seppo, Marola, Niko
core  

Existence results for double-phase problems via Morse theory

open access: yes, 2016
We obtain nontrivial solutions for a class of double-phase problems using Morse theory. In the absence of a direct sum decomposition, we use a cohomological local splitting to get an estimate of the critical groups at zero.Comment: 11 ...
Perera, Kanishka, Squassina, Marco
core   +1 more source

A Note on why Enforcing Discrete Maximum Principles by a simple a Posteriori Cutoff is a Good Idea

open access: yes, 2012
Discrete maximum principles in the approximation of partial differential equations are crucial for the preservation of qualitative properties of physical models. In this work we enforce the discrete maximum principle by performing a simple cutoff.
Kreuzer, Christian
core   +1 more source

Home - About - Disclaimer - Privacy