Results 41 to 50 of about 551 (71)
Harnack inequality for a class of functionals with non-standard growth via De Giorgi’s method
We study the regularity theory of quasi-minimizers of functionals with Lp(⋅)logL{L^{p(\,\cdot\,)}\log L}-growth. In particular, we prove the Harnack inequality and, in addition, the local boundedness and the Hölder continuity of the quasi-minimizers ...
Ok Jihoon
doaj +1 more source
The main purpose of this paper is to establish the existence of ground-state solutions to a class of Schrödinger equations with critical exponential growth involving the nonnegative, possibly degenerate, potential V:
Chen Lu, Lu Guozhen, Zhu Maochun
doaj +1 more source
Normalized solutions for the double-phase problem with nonlocal reaction
In this article, we consider the double-phase problem with nonlocal reaction. For the autonomous case, we introduce the methods of the Pohozaev manifold, Hardy-Littlewood Sobolev subcritical approximation, adding the mass term to prove the existence and ...
Cai Li, Zhang Fubao
doaj +1 more source
On nonlinear potential theory, and regular boundary points, for the p-Laplacian in N space variables
We turn back to some pioneering results concerning, in particular, nonlinear potential theory and non-homogeneous boundary value problems for the so-called p-Laplace operator.
Beirão da Veiga Hugo
doaj +1 more source
On the existence and uniqueness of p-harmonious functions [PDF]
We give a self-contained and short proof for the existence, uniqueness and measurability of so called $p$-harmonious functions. The proofs only use elementary analytic tools.
Luiro, Hannes +2 more
core
Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations
In this work, we investigate a class of pp-Laplacian equations with the Dirichlet boundary condition. Under some new conditions, the existence and multiplicity of nontrivial solutions are proved by means of the variational methods.
Zhao Tai-Jin, Li Chun
doaj +1 more source
In this article, we consider the following quasilinear polyharmonic equation: Δn/mmu = λh(x)|u|q-1u + u|u|pe|u|β in Ω, u = ∇u = ⋯ = ∇m-1u = 0 on ∂Ω, where Ω ⊂ ℝn, n ≥ 2m ≥ 2, is a bounded domain with smooth boundary.
Goyal Sarika, Sreenadh Konijeti
doaj +1 more source
The aim of this paper is investigating the existence of one or more weak solutions of the coupled quasilinear elliptic system of gradient ...
Candela Anna Maria +2 more
doaj +1 more source
Existence of positive radial solutions of general quasilinear elliptic systems
Let Ω⊂Rn(n≥2)\Omega \subset {{\mathbb{R}}}^{n}\hspace{0.33em}\left(n\ge 2) be either an open ball BR{B}_{R} centred at the origin or the whole space. We study the existence of positive, radial solutions of quasilinear elliptic systems of the form Δpu=f1(∣
Devine Daniel
doaj +1 more source
On a Singular Robin Problem with Convection Terms
In this paper, the existence of smooth positive solutions to a Robin boundary-value problem with non-homogeneous differential operator and reaction given by a nonlinear convection term plus a singular one is established.
Guarnotta Umberto +2 more
doaj +1 more source

