Results 41 to 50 of about 569 (77)
We study, in dimension $n\geq2$, the eigenvalue problem and the torsional rigidity for the $p$-Laplacian on convex sets with holes, with external Robin boundary conditions and internal Neumann boundary conditions.
Paoli, Gloria+2 more
core +1 more source
The main purpose of this paper is to establish the existence of ground-state solutions to a class of Schrödinger equations with critical exponential growth involving the nonnegative, possibly degenerate, potential V:
Chen Lu, Lu Guozhen, Zhu Maochun
doaj +1 more source
In this paper boundary regularity for p-harmonic functions is studied with respect to the Mazurkiewicz boundary and other compactifications. In particular, the Kellogg property (which says that the set of irregular boundary points has capacity zero) is ...
Björn, Anders
core +1 more source
On the problem of unique continuation for the p-Laplace equation
We study if two different solutions of the $p$-Laplace equation $$\nabla\cdot(|\nabla u|^{p-2}\nabla u)=0,$$ where ...
Alessandrini+21 more
core +1 more source
On nonlinear potential theory, and regular boundary points, for the p-Laplacian in N space variables
We turn back to some pioneering results concerning, in particular, nonlinear potential theory and non-homogeneous boundary value problems for the so-called p-Laplace operator.
Beirão da Veiga Hugo
doaj +1 more source
Positive solutions for nonvariational Robin problems
We study a nonlinear Robin problem driven by the $p$-Laplacian and with a reaction term depending on the gradient (the convection term). Using the theory of nonlinear operators of monotone-type and the asymptotic analysis of a suitable perturbation of ...
Papageorgiou, Nikolaos S.+2 more
core +2 more sources
In this note, we obtain a classification result for positive solutions to the critical p-Laplace equation in Rn ${\mathbb{R}}^{n}$ with n ≥ 4 and p > p n for some number pn∈n3,n+13 ${p}_{n}\in \left(\frac{n}{3},\frac{n+1}{3}\right)$ such that pn∼n3+1n $
Vétois Jérôme
doaj +1 more source
In this article, we consider the following quasilinear polyharmonic equation: Δn/mmu = λh(x)|u|q-1u + u|u|pe|u|β in Ω, u = ∇u = ⋯ = ∇m-1u = 0 on ∂Ω, where Ω ⊂ ℝn, n ≥ 2m ≥ 2, is a bounded domain with smooth boundary.
Goyal Sarika, Sreenadh Konijeti
doaj +1 more source
Stability of eigenvalues for variable exponent problems
In the framework of variable exponent Sobolev spaces, we prove that the variational eigenvalues defined by inf sup procedures of Rayleigh ratios for the Luxemburg norms are all stable under uniform convergence of the exponents.Comment: 10 ...
Colasuonno, Francesca, Squassina, Marco
core +1 more source
Normalized solutions for the double-phase problem with nonlocal reaction
In this article, we consider the double-phase problem with nonlocal reaction. For the autonomous case, we introduce the methods of the Pohozaev manifold, Hardy-Littlewood Sobolev subcritical approximation, adding the mass term to prove the existence and ...
Cai Li, Zhang Fubao
doaj +1 more source