Results 31 to 40 of about 357 (100)
In this paper, we consider a p-Laplacian heat equation with inhomogeneous Neumann boundary condition. We establish respectively the conditions on the nonlinearities to guarantee that the solution u(x,t) exists globally or blows up at some finite time. If
Fushan Li, Jinling Li
semanticscholar +1 more source
Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain
We investigate a boundary value problem for a nonlinear evolution biharmonic operator motivated by flexion of fully clamped beam in two different physical situations. In the first, the supports of the ends of the beam are fixed and in the second one, the supports of the ends of the beam have small displacements.
J. Límaco, H. R. Clark, L. A. Medeiros
wiley +1 more source
Front instability in a condensed phase combustion model
We consider a condensed phase (or solid) combustion model and its linearization around the travelling front solution. We construct an Evans function to characterize the eigenvalues of the linearized problem.
Bonnet Alexis+2 more
doaj +1 more source
A level set formulation for Willmore flow
A level set formulation of Willmore flow is derived using the gradient flow perspective. Starting from single embedded surfaces and the corresponding gradient flow, the metric is generalized to sets of level set surfaces using the identification of ...
M. Droske, M. Rumpf
semanticscholar +1 more source
Critical global asymptotics in higher‐order semilinear parabolic equations
We consider a higher‐order semilinear parabolic equation ut = −(−Δ)mu − g(x, u) in ℝN × ℝ+, m > 1. The nonlinear term is homogeneous: g(x, su) ≡ |s|p−1sg(x, u) and g(sx, u) ≡ |s|Qg(x, u) for any s ∈ ℝ, with exponents P > 1, and Q > −2m. We also assume that g satisfies necessary coercivity and monotonicity conditions for global existence of solutions ...
Victor A. Galaktionov
wiley +1 more source
In bounded n-dimensional domains Ω, the Neumann problem for the parabolic ...
Winkler Michael
doaj +1 more source
Numerical solution of a malignant invasion model using some finite difference methods
In this article, one standard and four nonstandard finite difference methods are used to solve a cross-diffusion malignant invasion model. The model consists of a system of nonlinear coupled partial differential equations (PDEs) subject to specified ...
Appadu Appanah Rao+1 more
doaj +1 more source
Integrodifferential equations with analytic semigroups
In this paper we study a class of integrodifferential equations considered in an arbitrary Banach space. Using the theory of analytic semigroups we establish the existence, uniqueness, regularity and continuation of solutions to these integrodifferential equations.
D. Bahuguna
wiley +1 more source
Global well posedness for the semilinear edge-degenerate parabolic equations on singular manifolds
In this article, we study the long-time dynamical behavior of the solution for a class of semilinear edge-degenerate parabolic equations on manifolds with edge singularities. By introducing a family of potential well and compactness method, we reveal the
Chen Yuxuan
doaj +1 more source
This paper deals with weak solution in weighted Sobolev spaces, of three‐point boundary value problems which combine Dirichlet and integral conditions, for linear and quasilinear parabolic equations in a domain with curved lateral boundaries. We, firstly, prove the existence, uniqueness, and continuous dependence of the solution for the linear equation.
Abdelfatah Bouziani
wiley +1 more source