Local Continuity of Weak Solutions to the Stefan Problem Involving the Singular $p$-Laplacian [PDF]
We establish the local continuity of locally bounded weak solutions (temperatures) to the doubly singular parabolic equation modeling the phase transition of a material: ∂tβ(u)−∆pu 3 0 for 2N N+1 < p < 2, where β is a maximal monotone graph with a jump ...
Naian Liao
semanticscholar +1 more source
The purpose of the article is to study the existence, regularity, stabilization and blow-up results of weak solution to the following parabolic (p,q){(p,q)}-singular equation:
Giacomoni Jacques +2 more
doaj +1 more source
Blow-up results of the positive solution for a class of degenerate parabolic equations
This paper is devoted to discussing the blow-up problem of the positive solution of the following degenerate parabolic equations: (r(u))t=div(∣∇u∣p∇u)+f(x,t,u,∣∇u∣2),(x,t)∈D×(0,T∗),∂u∂ν+σu=0,(x,t)∈∂D×(0,T∗),u(x,0)=u0(x),x∈D¯.\left\{\begin{array}{ll}{(r ...
Dong Chenyu, Ding Juntang
doaj +1 more source
On the local behavior of local weak solutions to some singular anisotropic elliptic equations
We study the local behavior of bounded local weak solutions to a class of anisotropic singular equations of the kind ∑i=1s∂iiu+∑i=s+1N∂i(Ai(x,u,∇u))=0,x∈Ω⊂⊂RNfor1≤s≤(N−1),\mathop{\sum }\limits_{i=1}^{s}{\partial }_{ii}u+\mathop{\sum }\limits_{i=s+1}^{N}{\
Ciani Simone +2 more
doaj +1 more source
On a final value problem for a nonhomogeneous fractional pseudo-parabolic equation
In this paper, we are interested in finding the function u(t,x),(t,x)∈[0,T)×Ω from the final data u(T,x)=ϕ(x), satisfies a nonhomogeneous fractional pseudo-parabolic equation. The problem is stable for the cases σν, the problem is ill-posed (in the sense
Nguyen Hoang Luc +3 more
doaj +1 more source
A local estimate for vectorial total variation minimization in one dimension [PDF]
Let $\boldsymbol u$ be the minimizer of vectorial total variation ($VTV$) with $L^2$ data-fidelity term on an interval $I$. We show that the total variation of $\boldsymbol u$ over any subinterval of $I$ is bounded by that of the datum over the same ...
Giacomelli, Lorenzo, Łasica, Michał
core +2 more sources
A conditional regularity result for p-harmonic flows [PDF]
We prove an $\varepsilon$-regularity result for a wide class of parabolic systems $$ u_t-\text{div}\big(|\nabla u|^{p-2}\nabla u) = B(u, \nabla u) $$ with the right hand side $B$ growing like $|\nabla u|^p$.
Katarzyna Ewa Mazowiecka +4 more
core +2 more sources
Short time behaviour for game-theoretic $p$-caloric functions [PDF]
We consider the solution of $u_t-\Delta^G_p u=0$ in a (not necessarily bounded) domain, satisfying $u=0$ initially and $u=1$ on the boundary at all times. Here, $\Delta^G_p u$ is the game-theoretic or normalized $p$-laplacian.
Berti, Diego, Magnanini, Rolando
core +2 more sources
Modeling and analysis of a phase field system for damage and phase separation processes in solids [PDF]
In this work, we analytically investigate a multi-component system for describing phase separation and damage processes in solids. The model consists of a parabolic diffusion equation of fourth order for the concentration coupled with an elliptic system ...
Bonetti, Elena +3 more
core +3 more sources
Parabolic BMO and global integrability of supersolutions to doubly nonlinear parabolic equations [PDF]
We prove that local and global parabolic BMO spaces are equal thus extending the classical result of Reimann and Rychener. Moreover, we show that functions in parabolic BMO are exponentially integrable in a general class of space-time cylinders.
Saari, Olli
core +1 more source

