Multiplicity solutions of a class fractional Schrödinger equations
In this paper, we study the existence of nontrivial solutions to a class fractional Schrödinger equations (−Δ)su+V(x)u=λf(x,u)inRN, $$ {( - \Delta )^s}u + V(x)u = \lambda f(x,u)\,\,{\rm in}\,\,{\mathbb{R}^N}, $$ where (−Δ)su(x)=2limε→0∫RN∖Bε(X)u(x)−u(y ...
Jia Li-Jiang +3 more
doaj +1 more source
Generalized Picone inequalities and their applications to (p,q)-Laplace equations
We obtain a generalization of the Picone inequality which, in combination with the classical Picone inequality, appears to be useful for problems with the (p,q)(p,q)-Laplace-type operators.
Bobkov Vladimir, Tanaka Mieko
doaj +1 more source
Multiplicity results for fractional Schrödinger-Kirchhoff systems involving critical nonlinearities
In this article, we study certain critical Schrödinger-Kirchhoff-type systems involving the fractional pp-Laplace operator on a bounded domain. More precisely, using the properties of the associated functional energy on the Nehari manifold sets and ...
Fareh Soraya +3 more
doaj +1 more source
A result on the bifurcation from the principal eigenvalue of the Ap‐Laplacian
We study the following bifurcation problem in any bounded domain Ω in ℝN: . We prove that the principal eigenvalue λ1 of the eigenvalue problem is a bifurcation point of the problem mentioned above.
P. Drábek, A. Elkhalil, A. Touzani
wiley +1 more source
Weak homoclinic solutions of anisotropic discrete nonlinear system with variable exponent
We prove the existence of weak solutions for an anisotropic homoclinic discrete nonlinear system. Suitable Hilbert spaces and norms are constructed. The proof of the main result is based on a minimization method.
Ibrango Idrissa +3 more
doaj +1 more source
Exponential decay of dispersion managed solitons for vanishing average dispersion [PDF]
We show that any $L^2$ solution of the Gabitov-Turitsyn equation describing dispersion managed solitons decay exponentially in space and frequency domains. This confirms in the affirmative Lushnikov's conjecture of exponential decay of dispersion managed
Dirk Hundertmark +3 more
core +4 more sources
On a problem of lower limit in the study of nonresonance
We prove the solvability of the Dirichlet problem for every given h, under a condition involving only the asymptotic behaviour of the potential F of f with respect to the first eigenvalue of the p‐Laplacian Δp. More general operators are also considered.
A. Anane, O. Chakrone
wiley +1 more source
In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF(p,Ω){\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian ...
Della Pietra Francesco +2 more
doaj +1 more source
Deformation of domain and the limit of the variational eigenvalues of semilinear elliptic operators
We consider the semilinear elliptic eigenvalue problem The asymptotic behavior of the variational eigenvalues μ = μn(r, α) obtained by Ljusternik‐Schnirelman theory is studied when the domain Ω0 is deformed continuously. We also consider the cases that Vol(Ωr) → 0, ∞ as r → ∞.
Tetsutaro Shibata
wiley +1 more source
Multiplicity of solutions to discrete inclusions with the p(k)-Laplace type equations
In this article, we prove the existence and multiplicity of solutions to discrete inclusions with the p(k)-Laplace type equations. We are interested in the existence of three solutions with the aid of linking arguments and using a three critical points ...
Ouaro Stanislas, Zoungrana Malick
doaj +1 more source

