Results 11 to 20 of about 455 (85)
A double-phase eigenvalue problem with large exponents
In the present article, we consider a double-phase eigenvalue problem with large exponents. Let λ(pn,qn)1{\lambda }_{\left({p}_{n},{q}_{n})}^{1} be the first eigenvalues and un{u}_{n} be the first eigenfunctions, normalized by ‖un‖ℋn=1\Vert {u}_{n}{\Vert
Yu Lujuan
doaj +1 more source
Multiplicity results for fractional Schrödinger-Kirchhoff systems involving critical nonlinearities
In this article, we study certain critical Schrödinger-Kirchhoff-type systems involving the fractional pp-Laplace operator on a bounded domain. More precisely, using the properties of the associated functional energy on the Nehari manifold sets and ...
Fareh Soraya+3 more
doaj +1 more source
On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent [PDF]
We consider a class of nonlinear Dirichlet problems involving the $p(x)$--Laplace operator. Our framework is based on the theory of Sobolev spaces with variable exponent and we establish the existence of a weak solution in such a space.
Dinu, Teodora Liliana
core +7 more sources
In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at ...
Manouni Said El+2 more
doaj +1 more source
Weak homoclinic solutions of anisotropic discrete nonlinear system with variable exponent
We prove the existence of weak solutions for an anisotropic homoclinic discrete nonlinear system. Suitable Hilbert spaces and norms are constructed. The proof of the main result is based on a minimization method.
Ibrango Idrissa+3 more
doaj +1 more source
The Convexity of a Fully Nonlinear Operator and Its Related Eigenvalue Problem
We first get an existence and uniqueness result for a nonlinear eigenvalue problem. Then, we establish the constant rank theorem for the problem and use it to get a convexity property of the solution.
Jiuzhou Huang
semanticscholar +1 more source
The eigenvalue problem for the p‐Laplacian‐like equations
We consider the eigenvalue problem for the following p‐Laplacian‐like equation: −div(a(|Du|p)|Du|p−2Du) = λf(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ ℝn is a bounded smooth domain. When λ is small enough, a multiplicity result for eigenfunctions are obtained. Two examples from nonlinear quantized mechanics and capillary phenomena, respectively, are given for
Zu-Chi Chen, Tao Luo
wiley +1 more source
Generalized Picone inequalities and their applications to (p,q)-Laplace equations
We obtain a generalization of the Picone inequality which, in combination with the classical Picone inequality, appears to be useful for problems with the (p,q)(p,q)-Laplace-type operators.
Bobkov Vladimir, Tanaka Mieko
doaj +1 more source
The conformal Yamabe constant of product manifolds [PDF]
Let (V,g) and (W,h) be compact Riemannian manifolds of dimension at least 3. We derive a lower bound for the conformal Yamabe constant of the product manifold (V x W, g+h) in terms of the conformal Yamabe constants of (V,g) and (W,h).Comment: 12 pages ...
Ammann, Bernd+2 more
core +3 more sources
Multiplicity solutions of a class fractional Schrödinger equations
In this paper, we study the existence of nontrivial solutions to a class fractional Schrödinger equations (−Δ)su+V(x)u=λf(x,u)inRN, $$ {( - \Delta )^s}u + V(x)u = \lambda f(x,u)\,\,{\rm in}\,\,{\mathbb{R}^N}, $$ where (−Δ)su(x)=2limε→0∫RN∖Bε(X)u(x)−u(y ...
Jia Li-Jiang+3 more
doaj +1 more source