Results 51 to 60 of about 455 (85)
A note on the Dancer–Fučík spectra of the fractional p-Laplacian and Laplacian operators
We study the Dancer–Fučík spectrum of the fractional p-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For p = 2, we present a very accurate local analysis.
Perera Kanishka+2 more
doaj +1 more source
Nonautonomous fractional problems with exponential growth
We study a class of nonlinear non-autonomous nonlocal equations with subcritical and critical exponential nonlinearity.
Miyagaki, Olimpio H.+2 more
core +1 more source
A shape optimization problem for Steklov eigenvalues in oscillating domains [PDF]
In this paper we study the asymptotic behavior of some optimal design problems related to nonlinear Steklov eigenvalues, under irregular (but diffeomorphic) perturbations of the domain.Comment: Some typos ...
Bonder, Julián Fernández+1 more
core +3 more sources
Non-autonomous Eigenvalue Problems with Variable (p1,p2)-Growth
We are concerned with the study of a class of non-autonomous eigenvalue problems driven by two non-homogeneous differential operators with variable (p1,p2){(p_{1},p_{2})}-growth.
Baraket Sami+3 more
doaj +1 more source
We study the decay of eigenfunctions of the non self-adjoint matrix operator $\calH = (\begin{smallmatrix} -\Delta +\mu+U & W \W & \Delta -\mu -U \end{smallmatrix})$, for $\mu>0$, corresponding to eigenvalues in the strip ...
Hundertmark, Dirk, Lee, Young-Ran
core +1 more source
On the solvability of discrete nonlinear Neumann problems involving the
In this article, we prove the existence and uniqueness of solutions for a family of discrete boundary value problems for data f which belongs to a discrete Hilbert space W. 2010 Mathematics Subject Classification: 47A75; 35B38; 35P30; 34L05; 34L30.
Ouaro Stanislas+2 more
doaj
Multiple perturbations of a singular eigenvalue problem
We study the perturbation by a critical term and a $(p-1)$-superlinear subcritical nonlinearity of a quasilinear elliptic equation containing a singular potential. By means of variational arguments and a version of the concentration-compactness principle
Cencelj, Matija+2 more
core +1 more source
Three nontrivial solutions for nonlinear fractional Laplacian equations
We study a Dirichlet-type boundary value problem for a pseudodifferential equation driven by the fractional Laplacian, proving the existence of three non-zero solutions.
Düzgün Fatma Gamze+1 more
doaj +1 more source
Upper bounds for the eigenvalues of Hessian equations
We prove some upper bounds for the Dirichlet eigenvalues of a class of fully nonlinear elliptic equations, namely the Hessian equationsComment: 15 pages, 1 ...
B Brandolini+20 more
core +1 more source
Regularity, positivity and asymptotic vanishing of solutions of a φ-Laplacian
In this note we prove that solutions of a φ-Laplacian operator on the entire space ℝN are locally regular (Hölder continuous), positive and vanish at infinity. Mild restrictions are imposed on the right-hand side of the equation. For example, we assume a
Arriagada Waldo, Huentutripay Jorge
doaj +1 more source