Results 31 to 40 of about 860 (84)
Derivation of the Gross-Pitaevskii dynamics through renormalized excitation number operators
We revisit the time evolution of initially trapped Bose-Einstein condensates in the Gross-Pitaevskii regime. We show that the system continues to exhibit BEC once the trap has been released and that the dynamics of the condensate is described by the time-
Christian Brennecke, Wilhelm Kroschinsky
doaj +1 more source
Multi-solitons for nonlinear Klein–Gordon equations
In this paper, we consider the existence of multi-soliton structures for the nonlinear Klein–Gordon (NLKG) equation in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\
RAPHAËL CÔTE, CLAUDIO MUÑOZ
doaj +1 more source
Spectral Shift Function for the Perturbations of Schrödinger Operators at High Energy [PDF]
2000 Mathematics Subject Classification: 35P20, 35J10, 35Q40.We give a complete pointwise asymptotic expansion for the Spectral Shift Function for Schrödinger operators that are perturbations of the Laplacian on Rn with slowly decaying ...
Assel, Rachid, Dimassi, Mouez
core
Blending Brownian motion and heat equation
In this short communication we present an original way to couple the Brownian motion and the heat equation. More in general, we suggest a way for coupling the Langevin equation for a particle, which describes a single realization of its trajectory, with ...
Cristiani, Emiliano
core +1 more source
Quasi-Exactly Solvable N-Body Spin Hamiltonians with Short-Range Interaction Potentials [PDF]
We review some recent results on quasi-exactly solvable spin models presenting near-neighbors interactions. These systems can be understood as cyclic generalizations of the usual Calogero-Sutherland models.
Enciso, A. +3 more
core +3 more sources
The asymptotic limits of zero modes of massless Dirac operators
Asymptotic behaviors of zero modes of the massless Dirac operator $H=\alpha\cdot D + Q(x)$ are discussed, where $\alpha= (\alpha_1, \alpha_2, \alpha_3)$ is the triple of $4 \times 4$ Dirac matrices, $ D=\frac{1}{i} \nabla_x$, and $Q(x)=\big(q_{jk} (x) \
A.A. Balinsky +13 more
core +2 more sources
THE EVOLUTION OF AN ANISOTROPIC HYPERBOLIC SCHRODINGER MAP HEAT FLOW
Solution of Schrödinger map heat flow equation with applied field in 2-dimensional H2 space is obtained. Two different methods are used to construct the norm −1 exact solution. The solution admit a finite time singularity or a global smooth property. AMS
P. Zhong
semanticscholar +1 more source
Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system
This article is concerned with the following Hamiltonian elliptic system: −ε2Δu+εb→⋅∇u+u+V(x)v=Hv(u,v)inRN,−ε2Δv−εb→⋅∇v+v+V(x)u=Hu(u,v)inRN,\left\{\begin{array}{l}-{\varepsilon }^{2}\Delta u+\varepsilon \overrightarrow{b}\cdot \nabla u+u+V\left(x)v={H}_ ...
Zhang Jian, Zhou Huitao, Mi Heilong
doaj +1 more source
Global Analytic Solutions for the Nonlinear Schr\"odinger Equation
We prove the existence of global analytic solutions to the nonlinear Schr\"odinger equation in one dimension for a certain type of analytic initial data in $L^2$.Comment: Corrected errors in proofs in section
Biyar, Magzhan +1 more
core +1 more source
Stability of spectral eigenspaces in nonlinear Schrodinger equations
We consider the time-dependent non linear Schrodinger equations with a double well potential in dimensions d =1 and d=2. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest two eigenvalues of the linear ...
Bambusi, Dario, Sacchetti, Andrea
core +2 more sources

