Results 51 to 60 of about 1,242 (111)
The periodic b-equation and Euler equations on the circle
In this note we show that the periodic b-equation can only be realized as an Euler equation on the Lie group Diff(S^1) of all smooth and orientiation preserving diffeomorphisms on the cirlce if b=2, i.e. for the Camassa-Holm equation.
Arnold V. I. +2 more
core +1 more source
The Painleve Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients [PDF]
The general KdV equation (gKdV) derived by T. Chou is one of the famous (1+1) dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable.
Kobayashi, Tadashi, Toda, Kouichi
core +1 more source
In this paper, we propose a new fractional Jacobi elliptic equation method to seek exact solutions of fractional partial differential equations. Based on a traveling wave transformation, certain fractional partial differential equation can be turned into
B. Zheng
semanticscholar +1 more source
In this work, consideration is given to the initial value problem associated with the periodic fifth‐order KdV–BBM equation. It is shown that the uniform radius of spatial analyticity σ(t) of solution at time t is bounded from below by ct−2/3 (for some c > 0), given initial data η0 that is analytic on the circle and has a uniform radius of spatial ...
Tegegne Getachew, Giovanni P. Galdi
wiley +1 more source
Addendum to a paper of Craig and Goodman
In [1], Craig and Goodman develop the geometrical optics solution of the linearized Korteweg‐deVries equation away from caustic, or turning, points. Here we develop an analogous solution valid at caustic points.
Arthur D. Gorman
wiley +1 more source
We introduce a novel solution concept, denoted ${\it\alpha}$-dissipative solutions, that provides a continuous interpolation between conservative and dissipative solutions of the Cauchy problem for the two-component Camassa–Holm system on the line with ...
KATRIN GRUNERT +2 more
doaj +1 more source
The mathematical models of problems that arise in many branches of science are nonlinear equations of evolution (NLEE). For this reason, NLEE have served as a language in formulating many engineering and scientific problems. Although the origin of nonlinear evolution equations dates back to ancient times, significant developments have been made in ...
Murat Koparan, Salim A. Messaoudi
wiley +1 more source
We discuss the existence, uniqueness, and continuous dependence on data, of anti‐periodic traveling wave solutions to higher order two‐dimensional equations of Korteweg‐deVries type.
Sergiu Aizicovici +2 more
wiley +1 more source
We present here an overview for the Encyclopaedia of Mathematics of the various forms and properties of this system of equations together with its geometric and Lie algebraic ...
Helminck, G.F.
core +1 more source
Self-Similar Blowup Solutions to the 2-Component Degasperis-Procesi Shallow Water System
In this article, we study the self-similar solutions of the 2-component Degasperis-Procesi water system:% [c]{c}% \rho_{t}+k_{2}u\rho_{x}+(k_{1}+k_{2})\rho u_{x}=0 u_{t}-u_{xxt}+4uu_{x}-3u_{x}u_{xx}-uu_{xxx}+k_{3}\rho\rho_{x}=0. By the separation method,
Camassa +19 more
core +1 more source

