Results 71 to 80 of about 1,252 (111)
A novel integrability analysis of a generalized Riemann type hydrodynamic hierarchy
The complete integrability of a generalized Riemann type hydrodynamic hierarchy is studied by means of a novel combination of symplectic and differential-algebraic tools.
A. Samoilenko +3 more
semanticscholar +1 more source
A 3-component extension of the Camassa-Holm hierarchy
We introduce a bi-Hamiltonian hierarchy on the loop-algebra of sl(2) endowed with a suitable Poisson pair. It gives rise to the usual CH hierarchy by means of a bi-Hamiltonian reduction, and its first nontrivial flow provides a 3-component extension of ...
B. Fuchssteiner +22 more
core +1 more source
In the following we study the qualitative properties of solutions to the geodesic flow induced by a higher order two-component Camassa-Holm system. In particular, criteria to ensure the existence of temporally global solutions are presented.
Escher, Joachim, Lyons, Tony
core +1 more source
Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$
We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in $H^s({{\mathbb {R}}})$ for any regularity $s>-\frac 12$ .
Benjamin Harrop-Griffiths +2 more
doaj +1 more source
In this paper, we study the following water wave model with a nonlocal viscous term:
Goubet Olivier, Manoubi Imen
doaj +1 more source
We show the existence of positive bound and ground states for a system of coupled nonlinear Schrödinger–Korteweg–de Vries equations. More precisely, we prove that there exists a positive radially symmetric ground state if either the coupling coefficient ...
Colorado Eduardo
doaj +1 more source
Soliton solution of the osmosis K(2, 2) equation
In this Letter, by using the bifurcation method of dynamical systems, we obtain the analytic expressions of soliton solution of the osmosis K(2, 2) equation.Comment: 8 ...
Biswas +10 more
core +1 more source
Dissipative perturbations for the K(n,n) Rosenau-Hyman equation
Compactons are compactly supported solitary waves for nondissipative evolution equations with nonlinear dispersion. In applications, these model equations are accompanied by dissipative terms which can be treated as small perturbations.
Abassy +43 more
core +1 more source
A remark on Gibbs measures with log-correlated Gaussian fields
We study Gibbs measures with log-correlated base Gaussian fields on the d-dimensional torus. In the defocusing case, the construction of such Gibbs measures follows from Nelson’s argument.
Tadahiro Oh +2 more
doaj +1 more source
We study decay of small solutions of the Born-Infeld equation in 1+1 dimensions, a quasilinear scalar field equation modeling nonlinear electromagnetism, as well as branes in String theory and minimal surfaces in Minkowski space-times.
Alejo, Miguel A., Muñoz, Claudio
core +1 more source

