Results 11 to 20 of about 3,496 (115)

Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system

open access: yesAdvances in Nonlinear Analysis, 2021
In this paper we are concerned with the existence, nonexistence and bifurcation of nontrivial solution of the nonlinear Schrödinger-Korteweg-de Vries type system(NLS-NLS-KdV).
Geng Qiuping, Wang Jun, Yang Jing
doaj   +1 more source

Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential

open access: yesAdvances in Nonlinear Analysis, 2021
This paper studies the mass-critical variable coefficient nonlinear Schrödinger equation. We first get the existence of the ground state by solving a minimization problem.
Pan Jingjing, Zhang Jian
doaj   +1 more source

Well-Posedness and Uniform Decay Rates for a Nonlinear Damped Schrödinger-Type Equation

open access: yesAdvanced Nonlinear Studies, 2021
In this paper we study the existence as well as uniform decay rates of the energy associated with the nonlinear damped Schrödinger equation,
Cavalcanti Marcelo M.   +1 more
doaj   +1 more source

E8 spectral curves

open access: yesProceedings of the London Mathematical Society, Volume 121, Issue 4, Page 954-1032, October 2020., 2020
Abstract I provide an explicit construction of spectral curves for the affine E8 relativistic Toda chain. Their closed‐form expression is obtained by determining the full set of character relations in the representation ring of E8 for the exterior algebra of the adjoint representation; this is in turn employed to provide an explicit construction of ...
Andrea Brini
wiley   +1 more source

Solitons for the coupled matrix nonlinear Schrödinger-type equations and the related Schrödinger flow

open access: yesOpen Mathematics, 2023
In this article, the coupled matrix nonlinear Schrödinger (NLS) type equations are gauge equivalent to the equation of Schrödinger flow from R1{{\mathbb{R}}}^{1} to complex Grassmannian manifold G˜n,k=GL(n,C)∕GL(k,C)×GL(n−k,C),{\widetilde{G}}_{n,k}={\rm ...
Zhong Shiping, Zhao Zehui, Wan Xinjie
doaj   +1 more source

Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity

open access: yesAdvanced Nonlinear Studies, 2022
In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity −Δu−λ1u=μ1∣u∣u+βuvinRN,−Δv−λ2v=μ2∣v∣v+β2u2inRN,\left\{\begin{array}{ll}-\Delta u-{\lambda }_{1}u={\mu }_{1}| u|
Wang Jun, Wang Xuan, Wei Song
doaj   +1 more source

Infinitely many solutions for quasilinear Schrödinger equations with sign-changing nonlinearity without the aid of 4-superlinear at infinity

open access: yesDemonstratio Mathematica, 2022
In this article, we will prove the existence of infinitely many solutions for a class of quasilinear Schrödinger equations without assuming the 4-superlinear at infinity on the nonlinearity. We achieve our goal by using the Fountain theorem.
Khiddi Mustapha, Essafi Lakbir
doaj   +1 more source

Fine Structure of Matrix Darboux-Toda Integrable Mapping [PDF]

open access: yes, 1998
We show here that matrix Darboux-Toda transformation can be written as a product of a number of mappings. Each of these mappings is a symmetry of the matrix nonlinear Shrodinger system of integro-differential equations. We thus introduce a completely new
Leznov, A. N., Yuzbashyan, E. A.
core   +3 more sources

GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES

open access: yesForum of Mathematics, Sigma, 2018
We consider the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation (4NLS) on the circle. In particular, we prove global well-posedness of the renormalized 4NLS in negative Sobolev spaces $H^{s}(\mathbb{T})$
TADAHIRO OH, YUZHAO WANG
doaj   +1 more source

Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction

open access: yesAdvances in Nonlinear Analysis, 2021
In the present paperwe study the existence of nontrivial solutions of a class of static coupled nonlinear fractional Hartree type system. First, we use the direct moving plane methods to establish the maximum principle(Decay at infinity and Narrow region
Wang Jun
doaj   +1 more source

Home - About - Disclaimer - Privacy