Results 41 to 50 of about 82 (73)
We investigate the ground states of 3-component Bose–Einstein condensates with harmonic-like trapping potentials in ℝ2{\mathbb{R}^{2}}, where the intra-component interactions μi{\mu_{i}} and the inter-component interactions βij=βji{\beta_{ij}=\beta_{ji}
Kong Yuzhen, Wang Qingxuan, Zhao Dun
doaj +1 more source
Concentration of blow-up solutions for the Gross-Pitaveskii equation
We consider the blow-up solutions for the Gross-Pitaveskii equation modeling the attractive Boes-Einstein condensate. First, a new variational characteristic is established by computing the best constant of a generalized Gagliardo-Nirenberg inequality ...
Zhu Shihui
doaj +1 more source
Scattering threshold for the focusing energy-critical generalized Hartree equation
This work investigates the asymptotic behavior of energy solutions to the focusing nonlinear Schrödinger equation of Choquard type i∂tu+Δu+∣u∣p−2(Iα*∣u∣p)u=0,p=1+2+αN−2,N≥3.i{\partial }_{t}u+\Delta u+{| u| }^{p-2}\left({I}_{\alpha }* {| u| }^{p})u=0 ...
Almuthaybiri Saleh+2 more
doaj +1 more source
Blow-up solutions to the Hartree-Fock type Schrödinger equation with the critical rotational speed
In this article, we are concerned with the existence, non-existence, and blow-up behavior of normalized ground state solutions for the mass critical Hartree-Fock type Schrödinger equation with rotation i∂tu=−Δu+2V(x)u+2ΩLzu−λu−bu∫RN∣u(y)∣2∣x−y∣2dy,(t,x ...
Tu Yuanyuan, Wang Jun
doaj +1 more source
This article is devoted to studying the existence of positive solutions to the following fractional Choquard equation: (−Δ)su+u=∫Ω∣u(y)∣p∣x−y∣N−αdy∣u∣p−2u+ε∫Ω∣u(y)∣2α,s*∣x−y∣N−αdy∣u∣2α,s*−2u,inΩ,u=0,onRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}^{s}u+u=
Ye Fumei, Yu Shubin, Tang Chun-Lei
doaj +1 more source
High-energy solutions for coupled Schrödinger systems with critical growth and lack of compactness
This article deals with the existence of high-energy positive solutions for the following coupled Schrödinger system with critical exponent: −Δu+V1(x)u=μ1u3+βuv2,x∈Ω,−Δv+V2(x)v=βu2v+μ2v3,x∈Ω,u,v∈D01,2(Ω)\left\{\begin{array}{l}-\Delta u+{V}_{1}\left(x)u={\
Guan Wen, Wang Da-Bin, Xie Huafei
doaj +1 more source
On generating functions in additive number theory, II: lower-order terms and applications to PDEs. [PDF]
Brandes J+4 more
europepmc +1 more source
Vortex Filament Equation for a Regular Polygon in the Hyperbolic Plane. [PDF]
de la Hoz F, Kumar S, Vega L.
europepmc +1 more source
Resorting to the spectral analysis of the 4 × 4 matrix spectral problem, we construct a 4 × 4 matrix Riemann–Hilbert problem to solve the initial value problem for the Hermitian symmetric space derivative nonlinear Schrödinger equation.
Chen Mingming, Geng Xianguo, Liu Huan
doaj +1 more source
The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions. [PDF]
Lee JM, Lenells J.
europepmc +1 more source