In this paper, we prove some continuous and compact embedding theorems for weighted Sobolev spaces, and consider both a general framework and spaces of radially symmetric functions.
Guoqing Zhang
semanticscholar +1 more source
A note on Berestycki-Cazenave's classical instability result for nonlinear Schr\"odinger equations
In this note we give an alternative, shorter proof of the classical result of Berestycki and Cazenave on the instability by blow-up for the standing waves of some nonlinear Schr\"odinger ...
Coz, Stefan Le
core +2 more sources
Nehari-type ground state solutions for a Choquard equation with doubly critical exponents
This paper deals with the following Choquard equation with a local nonlinear perturbation:
Chen Sitong, Tang Xianhua, Wei Jiuyang
doaj +1 more source
A new approach to linear and nonlinear Schrodinger equations using the natural decomposition method
In this paper, we proposed a new computational algorithms called a new approach to linear and nonlinear Schrödinger equations using the Natural Decomposition Method (NDM).
Shehu Maitama
semanticscholar +1 more source
Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions
In the present paper, we consider the following singularly perturbed problem:
Tang Xianhua, Chen Sitong
doaj +1 more source
In even space dimensions, the initial value problems for some high-order focusing semilinear evolution equations with exponential nonlinearities are considered.
Saanouni Tarek
doaj +1 more source
Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term
In this paper, we establish the global well-posedness of the Cauchy problem for the Gross-Pitaevskii equation with an rotational angular momentum term in the space $\Real^2$.Comment: 10 ...
Avron +16 more
core +1 more source
Nonlinear nonlocal elliptic problems in ℝ3: existence results and qualitative properties
We consider the following nonlinear nonlocal elliptic problem: −a+b∫R3∣∇ψ∣2dxΔψ+λψ=∫R3G(ψ(y))∣x−y∣αdyG′(ψ),x∈R3,-\left(a+b\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}{| \nabla \psi | }^{2}{\rm{d}}x\right)\Delta \psi +\lambda \psi =\left(\mathop{\int ...
Lü Dengfeng, Dai Shu-Wei
doaj +1 more source
Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\mathbb {T}^{4}$
We consider the $\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is ...
Xuwen Chen, Justin Holmer
doaj +1 more source
The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit
In the present paper we study the following scaled nonlinear Schr\"odinger equation (NLS) in one space dimension: \[ i\frac{d}{dt} \psi^{\varepsilon}(t) =-\Delta\psi^{\varepsilon}(t) + \frac{1}{\epsilon}V\left(\frac{x}{\epsilon}\right)|\psi^{\varepsilon}(
Cacciapuoti, C. +3 more
core +1 more source

