Results 51 to 60 of about 1,785 (116)
Local minimizers for the NLS equation with localized nonlinearity on noncompact metric graphs
We investigate the existence of local minimizers for the nonlinear Schrödinger (NLS) equation with localized nonlinearity on noncompact metric graphs. In the absence of ground states, we prove that normalized local minimizers of the NLS equation do exist
Li Xiaoguang
doaj +1 more source
A Fujita-type blowup result and low energy scattering for a nonlinear Schr\"o\-din\-ger equation
In this paper we consider the nonlinear Schr\"o\-din\-ger equation $i u_t +\Delta u +\kappa |u|^\alpha u=0$. We prove that if $\alpha
Cazenave, Thierry +3 more
core +2 more sources
The Maxwell-Bloch system of equations with inhomogeneous broadening is studied, and the local and global well-posedness of the corresponding initial-boundary value problem is established by taking advantage of the integrability of the system and making ...
Biondini Gino +2 more
doaj +1 more source
THE EVOLUTION OF AN ANISOTROPIC HYPERBOLIC SCHRODINGER MAP HEAT FLOW
Solution of Schrödinger map heat flow equation with applied field in 2-dimensional H2 space is obtained. Two different methods are used to construct the norm −1 exact solution. The solution admit a finite time singularity or a global smooth property. AMS
P. Zhong
semanticscholar +1 more source
In this paper, we establish the global well-posedness of the Cauchy problem for the Gross-Pitaevskii equation with an angular momentum rotational term in which the angular velocity is equal to the isotropic trapping frequency in the space $\Real^3 ...
Chengchun Hao +4 more
core +1 more source
In this paper, we study blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard ...
Binhua Feng, Chen Ruipeng, Liu Jiayin
doaj +1 more source
On the Real Analyticity of the Scattering Operator for the Hartree Equation
In this paper, we study the real analyticity of the scattering operator for the Hartree equation $ i\partial_tu=-\Delta u+u(V*|u|^2)$. To this end, we exploit interior and exterior cut-off in time and space, and combining with the compactness argument to
Miao, Changxing +2 more
core +1 more source
Ground state solutions for magnetic Schrödinger equations with polynomial growth
In this article, we investigate the following nonlinear magnetic Schrödinger equations: (−i∇+A(x))2u+V(x)u=f1(x,∣v∣2)v,(−i∇+A(x))2v+V(x)v=f2(x,∣u∣2)u,\left\{\begin{array}{l}{\left(-i\nabla +A\left(x))}^{2}u+V\left(x)u={f}_{1}\left(x,{| v| }^{2})v ...
Wu Yan, Chen Peng
doaj +1 more source
Improved results on planar Klein-Gordon-Maxwell system with critical exponential growth
This work is concerned with the following Klein-Gordon-Maxwell system: −Δu+V(x)u−(2ω+ϕ)ϕu=f(u),x∈R2,Δϕ=(ω+ϕ)u2,x∈R2,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-\left(2\omega +\phi )\phi u=f\left(u),\hspace{1.0em}& x\in {{\mathbb{R}}}^{2},\\ \Delta \phi =
Wen Lixi, Jin Peng
doaj +1 more source
LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE $d$-DIMENSIONAL TORUS
We consider the nonlinear wave equation (NLW) on the $d$-dimensional torus $\mathbb{T}^{d}$ with a smooth nonlinearity of order at least 2 at the origin. We prove that, for almost any mass, small and smooth solutions of high Sobolev indices are stable up
JOACKIM BERNIER +2 more
doaj +1 more source

