Results 51 to 60 of about 1,705 (80)
High-energy solutions for coupled Schrödinger systems with critical growth and lack of compactness
This article deals with the existence of high-energy positive solutions for the following coupled Schrödinger system with critical exponent: −Δu+V1(x)u=μ1u3+βuv2,x∈Ω,−Δv+V2(x)v=βu2v+μ2v3,x∈Ω,u,v∈D01,2(Ω)\left\{\begin{array}{l}-\Delta u+{V}_{1}\left(x)u={\
Guan Wen, Wang Da-Bin, Xie Huafei
doaj +1 more source
Ground-State Energy of a Dilute Fermi Gas
Recent developments in the physics of low density trapped gases make it worthwhile to verify old, well known results that, while plausible, were based on perturbation theory and assumptions about pseudopotentials.
Lieb, Elliott H. +2 more
core +1 more source
Concentration of blow-up solutions for the Gross-Pitaveskii equation
We consider the blow-up solutions for the Gross-Pitaveskii equation modeling the attractive Boes-Einstein condensate. First, a new variational characteristic is established by computing the best constant of a generalized Gagliardo-Nirenberg inequality ...
Zhu Shihui
doaj +1 more source
On generating functions in additive number theory, II: lower-order terms and applications to PDEs. [PDF]
Brandes J +4 more
europepmc +1 more source
Scattering threshold for the focusing energy-critical generalized Hartree equation
This work investigates the asymptotic behavior of energy solutions to the focusing nonlinear Schrödinger equation of Choquard type i∂tu+Δu+∣u∣p−2(Iα*∣u∣p)u=0,p=1+2+αN−2,N≥3.i{\partial }_{t}u+\Delta u+{| u| }^{p-2}\left({I}_{\alpha }* {| u| }^{p})u=0 ...
Almuthaybiri Saleh +2 more
doaj +1 more source
This article is devoted to studying the existence of positive solutions to the following fractional Choquard equation: (−Δ)su+u=∫Ω∣u(y)∣p∣x−y∣N−αdy∣u∣p−2u+ε∫Ω∣u(y)∣2α,s*∣x−y∣N−αdy∣u∣2α,s*−2u,inΩ,u=0,onRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}^{s}u+u=
Ye Fumei, Yu Shubin, Tang Chun-Lei
doaj +1 more source
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u) inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\
Cingolani Silvia +2 more
doaj +1 more source
Vortex Filament Equation for a Regular Polygon in the Hyperbolic Plane. [PDF]
de la Hoz F, Kumar S, Vega L.
europepmc +1 more source
The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions. [PDF]
Lee JM, Lenells J.
europepmc +1 more source
Resorting to the spectral analysis of the 4 × 4 matrix spectral problem, we construct a 4 × 4 matrix Riemann–Hilbert problem to solve the initial value problem for the Hermitian symmetric space derivative nonlinear Schrödinger equation.
Chen Mingming, Geng Xianguo, Liu Huan
doaj +1 more source

