Results 61 to 70 of about 1,722 (89)
We study the existence of radially symmetric solutions of the following nonlinear scalar field equations in ℝN{\mathbb{R}^{N}} (N≥2{N\geq 2}):
Hirata Jun, Tanaka Kazunaga
doaj +1 more source
The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions. [PDF]
Lee JM, Lenells J.
europepmc +1 more source
Singularly Perturbed Fractional Schrödinger Equation Involving a General Critical Nonlinearity
In this paper, we are concerned with the existence and concentration phenomena of solutions for the following singularly perturbed fractional Schrödinger problem:
Jin Hua, Liu Wenbin, Zhang Jianjun
doaj +1 more source
Ground-State Energy of a Dilute Fermi Gas
Recent developments in the physics of low density trapped gases make it worthwhile to verify old, well known results that, while plausible, were based on perturbation theory and assumptions about pseudopotentials.
Lieb, Elliott H.+2 more
core +1 more source
Regularity for critical fractional Choquard equation with singular potential and its applications
We study the following fractional Choquard equation (−Δ)su+u∣x∣θ=(Iα*F(u))f(u),x∈RN,{\left(-\Delta )}^{s}u+\frac{u}{{| x| }^{\theta }}=({I}_{\alpha }* F\left(u))f\left(u),\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N⩾3N\geqslant 3, s∈12,1s\in \left ...
Liu Senli, Yang Jie, Su Yu
doaj +1 more source
In this paper, we study the quasilinear Schrödinger equation -Δu+V(x)u-γ2(Δu2)u=|u|p-2u{-\Delta u+V(x)u-\frac{\gamma}{2}(\Delta u^{2})u=|u|^{p-2}u}, x∈ℝN{x\in\mathbb{R}^{N}}, where V(x):ℝN→ℝ{V(x):\mathbb{R}^{N}\to\mathbb{R}} is a given potential,
Wang Youjun, Shen Yaotian
doaj +1 more source
Dispersive estimates and NLS on product manifolds
We prove a general dispersive estimate for a Schroedinger type equation on a product manifold, under the assumption that the equation restricted to each factor satisfies suitable dispersive estimates.
Pierfelice, Vittoria
core
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u) inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\
Cingolani Silvia+2 more
doaj +1 more source
Many existence and nonexistence results are known for nonnegative radial solutions to the ...
Rolando Sergio
doaj +1 more source
Resorting to the spectral analysis of the 4 × 4 matrix spectral problem, we construct a 4 × 4 matrix Riemann–Hilbert problem to solve the initial value problem for the Hermitian symmetric space derivative nonlinear Schrödinger equation.
Chen Mingming, Geng Xianguo, Liu Huan
doaj +1 more source