Results 81 to 90 of about 1,815 (116)
In this paper, we first show that there exists a maximizer for the non-endpoint Strichartz inequalities for the Schr\"odinger equation in all dimensions based on the recent linear profile decomposition results.
Shao, Shuanglin
core +1 more source
Resorting to the spectral analysis of the 4 × 4 matrix spectral problem, we construct a 4 × 4 matrix Riemann–Hilbert problem to solve the initial value problem for the Hermitian symmetric space derivative nonlinear Schrödinger equation.
Chen Mingming, Geng Xianguo, Liu Huan
doaj +1 more source
The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions. [PDF]
Lee JM, Lenells J.
europepmc +1 more source
Regularity for critical fractional Choquard equation with singular potential and its applications
We study the following fractional Choquard equation (−Δ)su+u∣x∣θ=(Iα*F(u))f(u),x∈RN,{\left(-\Delta )}^{s}u+\frac{u}{{| x| }^{\theta }}=({I}_{\alpha }* F\left(u))f\left(u),\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N⩾3N\geqslant 3, s∈12,1s\in \left ...
Liu Senli, Yang Jie, Su Yu
doaj +1 more source
We study the existence of radially symmetric solutions of the following nonlinear scalar field equations in ℝN{\mathbb{R}^{N}} (N≥2{N\geq 2}):
Hirata Jun, Tanaka Kazunaga
doaj +1 more source
Global solutions to 3D quadratic nonlinear Schrödinger-type equation
We consider the Cauchy problem to the 3D fractional Schrödinger equation with quadratic interaction of $u\bar u$ type. We prove the global existence of solutions and scattering properties for small initial data.
Zihua Guo, Naijia Liu, Liang Song
doaj +1 more source
Singularly Perturbed Fractional Schrödinger Equation Involving a General Critical Nonlinearity
In this paper, we are concerned with the existence and concentration phenomena of solutions for the following singularly perturbed fractional Schrödinger problem:
Jin Hua, Liu Wenbin, Zhang Jianjun
doaj +1 more source
In this paper, we study the quasilinear Schrödinger equation -Δu+V(x)u-γ2(Δu2)u=|u|p-2u{-\Delta u+V(x)u-\frac{\gamma}{2}(\Delta u^{2})u=|u|^{p-2}u}, x∈ℝN{x\in\mathbb{R}^{N}}, where V(x):ℝN→ℝ{V(x):\mathbb{R}^{N}\to\mathbb{R}} is a given potential,
Wang Youjun, Shen Yaotian
doaj +1 more source
Many existence and nonexistence results are known for nonnegative radial solutions to the ...
Rolando Sergio
doaj +1 more source
In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type −Δu+u2∗1∣4πx∣u=μf(x)∣u∣p−2u+g(x)∣u∣4uinR3,-\Delta u+\left({u}^{2}\ast \frac{1}{| 4\pi x| }\right)u=\mu f\left(x){| u| }^{p-2 ...
Zheng Tian-Tian +2 more
doaj +1 more source

