Results 1 to 10 of about 1,480 (78)
Ground states for fractional Schrödinger equations involving a critical nonlinearity
This paper is aimed to study ground states for a class of fractional Schrödinger equations involving the critical exponents:
Zhang Xia, Zhang Binlin, Xiang Mingqi
doaj +1 more source
In this paper, we show how to approximate the solution to the generalized time-fractional Huxley-Burgers’ equation by a numerical method based on the cubic B-spline collocation method and the mean value theorem for integrals.
Hadhoud Adel R. +3 more
doaj +1 more source
Nonreactive solute transport in soil columns: classical and fractional-calculus modeling [PDF]
Vertical nonreactive solute transport data collected in three laboratory soil columns (made out of sediment samples from the Pampean aquifer located southeast of the Buenos Aires province) are contrasted with the explicit solutions of two model 1D linear
Benavente, Micaela Andrea +4 more
core
The Analytic Methods for Solving the System of Fractional Order Brusselator Equations
Systems of fractional order Brusselator equations (SFBEs) have gained recent attention from researchers due to their relevance in the modeling of reaction‐diffusion processes in triple collision, enzymatic reactions, and plasma. Finding the solution to the SFBEs has become paramount in the scientific community.
Henry Kwasi Asiedu +4 more
wiley +1 more source
In this article, we focus on studying space-time fractional parabolic equations with the nonlocal Bellman operator and the Marchaud fractional derivative. To address the difficulty caused by the space-time non-locality of operator ∂tα−Fs ${\partial }_{t}^
Liu Mengru, Zhang Lihong, Wang Guotao
doaj +1 more source
Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation [PDF]
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for ...
Boyadjiev, Lyubomir, Nikolova, Yanka
core
In this article, we mainly study the qualitative properties of solutions for dual fractional-order parabolic equations with nonlocal Monge-Ampère operators in different domains ∂tβμ(y,t)−Dατμ(y,t)=f(μ(y,t)).{\partial }_{t}^{\beta }\mu \left(y,t)-{D}_ ...
Yang Zerong, He Yong
doaj +1 more source
Using the Mellin transform approach, it is shown that, in contrast with integer-order derivatives, the fractional-order derivative of a periodic function cannot be a function with the same period.
Kaslik, Eva, Sivasundaram, Seenith
core +1 more source
A note on the Dancer–Fučík spectra of the fractional p-Laplacian and Laplacian operators
We study the Dancer–Fučík spectrum of the fractional p-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For p = 2, we present a very accurate local analysis.
Perera Kanishka +2 more
doaj +1 more source
Recently, regime-switching option pricing based on fractional diffusion models has been used, which explains many significant empirical facts about financial markets better.
Wu Shuang +3 more
doaj +1 more source

