In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u) inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\
Cingolani Silvia+2 more
doaj +1 more source
Fractional Perimeters from a Fractal Perspective
The purpose of this paper consists in a better understanding of the fractional nature of the nonlocal perimeters introduced in [L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math.
Lombardini Luca
doaj +1 more source
Stationary dense operators in sequentially complete locally convex spaces
The purpose of this paper is to investigate the stationary dense operators and their connection to distribution semigroups and abstract Cauchy problem in sequentially complete spaces.Comment: arXiv admin note: substantial text overlap with arXiv:1610 ...
c, Marko Kosti\'+2 more
core
Multiple solutions for a fractional $p$-Laplacian equation with sign-changing potential
We use a variant of the fountain Theorem to prove the existence of infinitely many weak solutions for the following fractional p-Laplace equation (-\Delta)^{s}_{p}u+V(x)|u|^{p-2}u=f(x,u) in R^N, where $s \in (0,1)$,$ p \geq 2$,$ N \geq 2$, $(-\Delta)^{s ...
Ambrosio, Vincenzo
core
On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. [PDF]
Abdo MS, Shah K, Wahash HA, Panchal SK.
europepmc +1 more source
Fundamental solutions for semidiscrete evolution equations via Banach algebras. [PDF]
González-Camus J, Lizama C, Miana PJ.
europepmc +1 more source
Higher-dimensional physical models with multimemory indices: analytic solution and convergence analysis. [PDF]
Jaradat I+4 more
europepmc +1 more source
Monotonicity of solutions for parabolic equations involving nonlocal Monge-Ampère operator
In this article, we consider the parabolic equations with nonlocal Monge-Ampère operators ∂u∂t(x,t)−Dsθu(x,t)=f(u(x,t)),(x,t)∈R+n×R.\frac{\partial u}{\partial t}\left(x,t)-{D}_{s}^{\theta }u\left(x,t)=f\left(u\left(x,t)),\hspace{1.0em}\left(x,t)\in ...
Du Guangwei, Wang Xinjing
doaj +1 more source
Singular boundary behaviour and large solutions for fractional elliptic equations. [PDF]
Abatangelo N+2 more
europepmc +1 more source
Multiple concentrating solutions for a fractional (p, q)-Choquard equation
We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon ...
Ambrosio Vincenzo
doaj +1 more source