On Dirichlet problem for fractional p-Laplacian with singular non-linearity
In this article, we study the following fractional p-Laplacian equation with critical growth and singular non-linearity:
Mukherjee Tuhina, Sreenadh Konijeti
doaj +1 more source
Least energy sign-changing solutions for a nonlocal anisotropic Kirchhoff type equation
In this paper, we investigate the existence of sign-changing solutions for the following class of fractional Kirchhoff type equations with potential (1+b[u]α2)((-Δx)αu-Δyu)+V(x,y)u=f(x,y,u),(x,y)∈ℝN=ℝn×ℝm,\left( {1 + b\left[ u \right]_\alpha ^2} \right ...
Rahmani Mohammed+3 more
doaj +1 more source
A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I [PDF]
In this paper, we consider a nonlinear critical problem involving the fractional Laplacian operator arising in conformal geometry, namely the prescribed -curvature problem on the standard n- sphere n ≥ 2.
W. Abdelhedi, H. Chtioui, H. Hajaiej
semanticscholar +1 more source
On fractional p-Laplacian problems with local conditions
In this paper, we deal with fractional p-Laplacian equations of the ...
Li Anran, Wei Chongqing
doaj +1 more source
Fractional Fokker-Planck-Kolmogorov type Equations and their Associated Stochastic Differential Equations [PDF]
MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf GorenfloThere is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called ...
Hahn, Marjorie, Umarov, Sabir
core +1 more source
A new equivalence of Stefan's problems for the Time-Fractional-Diffusion Equation [PDF]
A fractional Stefan problem with a boundary convective condition is solved, where the fractional derivative of order $ \alpha \in (0,1) $ is taken in the Caputo sense.
Marcus, Eduardo Santillan+1 more
core +2 more sources
Fractional Hardy-Sobolev equations with nonhomogeneous terms
This paper deals with existence and multiplicity of positive solutions to the following class of nonlocal equations with critical nonlinearity:
Bhakta Mousomi+2 more
doaj +1 more source
Finite and infinite speed of propagation for porous medium equations with fractional pressure [PDF]
We study a porous medium equation with fractional potential pressure: $$ \partial_t u= \nabla \cdot (u^{m-1} \nabla p), \quad p=(-\Delta)^{-s}u, $$ for $m>1 ...
del Teso, Félix+2 more
core +4 more sources
Ground states for fractional Schrödinger equations involving a critical nonlinearity
This paper is aimed to study ground states for a class of fractional Schrödinger equations involving the critical exponents:
Zhang Xia, Zhang Binlin, Xiang Mingqi
doaj +1 more source
On a Class of Caputo Time Fractional Problems with Boundary Integral Conditions
The aim of this paper is to work out the solvability of a class of Caputo time fractional problems with boundary integral conditions. A generalized formula of integration is demonstrated and applied to establish the a priori estimate of the solution ...
Aggoun Karim, Merad Ahcene
doaj +1 more source