Results 71 to 80 of about 1,526 (136)
This article is concerned with semilinear time-fractional diffusion equations with polynomial nonlinearity up{u}^{p} in a bounded domain Ω\Omega with the homogeneous Neumann boundary condition and positive initial values.
Floridia Giuseppe+2 more
doaj +1 more source
Solvability and microlocal analysis of the fractional Eringen wave equation
We discuss unique existence and microlocal regularity properties of Sobolev space solutions to the fractional Eringen wave equation, initially given in the form of a system of equations in which the classical non-local Eringen constitutive equation is ...
Hörmann, Günther+2 more
core +1 more source
In this paper, we propose a new approximate method, namely fractional natural decomposition method (FNDM) in order to solve a certain class of nonlinear time-fractional wave-like equations with variable coefficients.
Khalouta Ali, Kadem Abdelouahab
doaj +1 more source
This work presents a numerical comparison between two efficient methods namely the fractional natural variational iteration method (FNVIM) and the fractional natural homotopy perturbation method (FNHPM) to solve a certain type of nonlinear Caputo time ...
Khalouta Ali, Kadem Abdelouahab
doaj +1 more source
In this paper the existence and the uniqueness of solution of non-local problem with integral gluing condition for mixed type equation are investigated. Considering loaded parabolichyperbolic equation involve the Caputo fractional derivative and Erdelyi ...
O. Abdullaev
semanticscholar +1 more source
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u) inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\
Cingolani Silvia+2 more
doaj +1 more source
α-Mellin Transform and One of Its Applications [PDF]
MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45We consider a generalization of the classical Mellin transformation, called α-Mellin transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presentation from the paper [5], where we
Nikolova, Yanka
core
Finite difference method for solving the space-time fractional wave equation in the Caputo form
In this paper a space-time fractional wave equation on a finite domain is considered. The time and space fractional derivative are described in the Caputo sense. We propose a finite difference scheme to solve the space-time fractional wave equation.
E. Afshari, B. Sepehrian, A. Nazari
semanticscholar +1 more source
In this paper, we consider the general dual fractional parabolic problem ∂tαu(x,t)+Lu(x,t)=f(t,u(x,t))inRn×R. ${\partial }_{t}^{\alpha }u\left(x,t\right)+\mathcal{L}u\left(x,t\right)=f\left(t,u\left(x,t\right)\right) \text{in} {\mathbb{R}}^{n}{\times ...
Guo Yahong, Ma Lingwei, Zhang Zhenqiu
doaj +1 more source
Using the Mellin transform approach, it is shown that, in contrast with integer-order derivatives, the fractional-order derivative of a periodic function cannot be a function with the same period.
Kaslik, Eva, Sivasundaram, Seenith
core +1 more source