Results 81 to 90 of about 1,557 (138)

α-Mellin Transform and One of Its Applications [PDF]

open access: yes, 2012
MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45We consider a generalization of the classical Mellin transformation, called α-Mellin transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presentation from the paper [5], where we
Nikolova, Yanka
core  

Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems

open access: yes, 2019
Let $\Omega$ be a smooth, bounded domain of $\mathbb{R}^{N}$, $\omega$ be a positive, $L^{1}$-normalized function, and ...
Ercole, Grey   +2 more
core   +1 more source

Multiple concentrating solutions for a fractional (p, q)-Choquard equation

open access: yesAdvanced Nonlinear Studies
We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon ...
Ambrosio Vincenzo
doaj   +1 more source

Local regularity for fractional heat equations

open access: yes, 2017
We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set $\Omega\subset\mathbb{R}^N$.
D Lamberton   +16 more
core   +1 more source

Nonlinear elliptic equations with self-adjoint integro-differential operators and measure data under sign condition on the nonlinearity

open access: yesAdvanced Nonlinear Studies
We study the existence problem for semilinear equations (E): −Au = f(⋅, u) + μ, with Borel measure μ and operator A that generates a symmetric Markov semigroup.
Klimsiak Tomasz
doaj   +1 more source

Monotonicity of solutions for parabolic equations involving nonlocal Monge-Ampère operator

open access: yesAdvances in Nonlinear Analysis
In this article, we consider the parabolic equations with nonlocal Monge-Ampère operators ∂u∂t(x,t)−Dsθu(x,t)=f(u(x,t)),(x,t)∈R+n×R.\frac{\partial u}{\partial t}\left(x,t)-{D}_{s}^{\theta }u\left(x,t)=f\left(u\left(x,t)),\hspace{1.0em}\left(x,t)\in ...
Du Guangwei, Wang Xinjing
doaj   +1 more source

Critical fractional Schrödinger-Poisson systems with lower perturbations: the existence and concentration behavior of ground state solutions

open access: yesAdvances in Nonlinear Analysis
In this article, we study the following fractional Schrödinger-Poisson system: ε2s(−Δ)su+V(x)u+ϕu=f(u)+∣u∣2s*−2u,inR3,ε2t(−Δ)tϕ=u2,inR3,\left\{\begin{array}{ll}{\varepsilon }^{2s}{\left(-\Delta )}^{s}u+V\left(x)u+\phi u=f\left(u)+{| u| }^{{2}_{s}^{* }-2 ...
Feng Shenghao   +2 more
doaj   +1 more source

Nonlocal perturbations of the fractional Choquard equation

open access: yesAdvances in Nonlinear Analysis, 2017
We study the ...
Singh Gurpreet
doaj   +1 more source

Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent

open access: yesAdvances in Nonlinear Analysis, 2019
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent.
Xiang Mingqi   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy