Results 81 to 90 of about 1,557 (138)
α-Mellin Transform and One of Its Applications [PDF]
MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45We consider a generalization of the classical Mellin transformation, called α-Mellin transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presentation from the paper [5], where we
Nikolova, Yanka
core
Let $\Omega$ be a smooth, bounded domain of $\mathbb{R}^{N}$, $\omega$ be a positive, $L^{1}$-normalized function, and ...
Ercole, Grey +2 more
core +1 more source
Multiple concentrating solutions for a fractional (p, q)-Choquard equation
We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon ...
Ambrosio Vincenzo
doaj +1 more source
Local regularity for fractional heat equations
We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set $\Omega\subset\mathbb{R}^N$.
D Lamberton +16 more
core +1 more source
We study the existence problem for semilinear equations (E): −Au = f(⋅, u) + μ, with Borel measure μ and operator A that generates a symmetric Markov semigroup.
Klimsiak Tomasz
doaj +1 more source
Monotonicity of solutions for parabolic equations involving nonlocal Monge-Ampère operator
In this article, we consider the parabolic equations with nonlocal Monge-Ampère operators ∂u∂t(x,t)−Dsθu(x,t)=f(u(x,t)),(x,t)∈R+n×R.\frac{\partial u}{\partial t}\left(x,t)-{D}_{s}^{\theta }u\left(x,t)=f\left(u\left(x,t)),\hspace{1.0em}\left(x,t)\in ...
Du Guangwei, Wang Xinjing
doaj +1 more source
In this article, we study the following fractional Schrödinger-Poisson system: ε2s(−Δ)su+V(x)u+ϕu=f(u)+∣u∣2s*−2u,inR3,ε2t(−Δ)tϕ=u2,inR3,\left\{\begin{array}{ll}{\varepsilon }^{2s}{\left(-\Delta )}^{s}u+V\left(x)u+\phi u=f\left(u)+{| u| }^{{2}_{s}^{* }-2 ...
Feng Shenghao +2 more
doaj +1 more source
Boundary regularity of an isotropically censored nonlocal operator. [PDF]
Chan H.
europepmc +1 more source
Nonlocal perturbations of the fractional Choquard equation
We study the ...
Singh Gurpreet
doaj +1 more source
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent.
Xiang Mingqi +2 more
doaj +1 more source

