Results 1 to 10 of about 205 (28)
A fractional Kirchhoff problem involving a singular term and a critical nonlinearity [PDF]
In this paper, we consider the following critical nonlocal problem:
Fiscella Alessio
doaj +2 more sources
In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\
Zhang Jian, Liu Huize, Zuo Jiabin
doaj +1 more source
Infinitely many solutions for non-local problems with broken symmetry
The aim of this paper is to investigate the existence of solutions of the non-local elliptic ...
Bartolo Rossella+2 more
doaj +1 more source
Some remarks about the summability of nonlocal nonlinear problems
In this note, we will study the problem (-Δ)psu = f(x) on Ω, u = 0 in ℝN∖Ω, where 0 < s < 1, (-Δ)ps is the nonlocal p-Laplacian defined below, Ω is a smooth bounded domain. The main point studied in this work is to prove, adapting the techniques used in [
Barrios Begoña+2 more
doaj +1 more source
Very large solutions for the fractional Laplacian: Towards a fractional Keller–Osserman condition
We look for solutions of (-△)su+f(u)=0{{\left(-\triangle\right)}^{s}u+f(u)=0} in a bounded smooth domain Ω, s∈(0,1){s\in(0,1)}, with a strong singularity at the boundary. In particular, we are interested in solutions which are L1(Ω){L^{1}(\Omega)} and
Abatangelo Nicola
doaj +1 more source
On the fractional p-Laplacian equations with weight and general datum
The aim of this paper is to study the following problem:
Abdellaoui Boumediene+2 more
doaj +1 more source
Kirchhoff–Hardy Fractional Problems with Lack of Compactness
This paper deals with the existence and the asymptotic behavior of nontrivial solutions for some classes of stationary Kirchhoff problems driven by a fractional integro-differential operator and involving a Hardy potential and different critical ...
Fiscella Alessio, Pucci Patrizia
doaj +1 more source
Elliptic Pre-Complexes, Hodge-like Decompositions and Overdetermined Boundary-Value Problems
We solve a problem posed by Calabi more than 60 years ago, known as the Saint-Venant compatibility problem: Given a compact Riemannian manifold, generally with boundary, find a compatibility operator for Lie derivatives of the metric tensor. This problem
Raz Kupferman, Roee Leder
doaj +1 more source
We study the existence problem for semilinear equations (E): −Au = f(⋅, u) + μ, with Borel measure μ and operator A that generates a symmetric Markov semigroup.
Klimsiak Tomasz
doaj +1 more source
Design of a hesitant movement gesture for mobile robots. [PDF]
Reinhardt J, Bengler K.
europepmc +1 more source