Results 1 to 10 of about 466 (74)

Stability of an additive-quadratic-quartic functional equation

open access: yesDemonstratio Mathematica, 2020
In this paper, we investigate the stability of an additive-quadratic-quartic functional ...
Kim Gwang Hui, Lee Yang-Hi
doaj   +3 more sources

Remarks Connected with the Weak Limit of Iterates of Some Random-Valued Functions and Iterative Functional Equations

open access: yesAnnales Mathematicae Silesianae, 2020
The paper consists of two parts. At first, assuming that (Ω, A, P) is a probability space and (X, ϱ) is a complete and separable metric space with the σ-algebra 𝒝 of all its Borel subsets we consider the set 𝒭c of all 𝒝 ⊗ 𝒜-measurable and contractive in ...
Baron Karol
doaj   +1 more source

Approximate multi-variable bi-Jensen-type mappings

open access: yesDemonstratio Mathematica, 2023
In this study, we obtained the stability of the multi-variable bi-Jensen-type functional equation: n2fx1+⋯+xnn,y1+⋯+ynn=∑i=1n∑j=1nf(xi,yj).{n}^{2}f\left(\frac{{x}_{1}+\cdots +{x}_{n}}{n},\frac{{y}_{1}+\cdots +{y}_{n}}{n}\right)=\mathop{\sum }\limits_{i=1}
Bae Jae-Hyeong, Park Won-Gil
doaj   +1 more source

Hyers-Ulam-Rassias Stability of Generalized Derivations [PDF]

open access: yes, 2006
The generalized Hyers--Ulam--Rassias stability of generalized derivations on unital Banach algebras into Banach bimodules is established.Comment: 9 pages, minor changes, to appear in Internat. J. Math.
Moslehian, Mohammad Sal
core   +5 more sources

A Levi–Civita Equation on Monoids, Two Ways

open access: yesAnnales Mathematicae Silesianae, 2022
We consider the Levi–Civita equation f(xy)=g1(x)h1(y)+g2(x)h2(y)f\left( {xy} \right) = {g_1}\left( x \right){h_1}\left( y \right) + {g_2}\left( x \right){h_2}\left( y \right) for unknown functions f, g1, g2, h1, h2 : S → ℂ, where S is a monoid.
Ebanks Bruce
doaj   +1 more source

The Jensen functional equation in non‐Archimedean normed spaces

open access: yesJournal of Function Spaces, Volume 7, Issue 1, Page 13-24, 2009., 2009
We investigate the Hyers–Ulam–Rassias stability of the Jensen functional equation in non‐Archimedean normed spaces and study its asymptotic behavior in two directions: bounded and unbounded Jensen differences. In particular, we show that a mapping f between non‐Archimedean spaces with f(0) = 0 is additive if and only if ‖f(x+y2)−f(x)+f(y)2‖→0 as max ...
Mohammad Sal Moslehian, George Isac
wiley   +1 more source

Matrix method for solving linear complex vector functional equations

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 29, Issue 4, Page 217-238, 2002., 2002
We give a new matrix method for solving both homogeneous and nonhomogeneous linear complex vector functional equations with constant complex coefficients.
Ice B. Risteski
wiley   +1 more source

On the stability of the quadratic mapping in normed spaces

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 25, Issue 4, Page 217-229, 2001., 2001
The Hyers‐Ulam stability, the Hyers‐Ulam‐Rassias stability, and also the stability in the spirit of Gavruţa for each of the following quadratic functional equations f(x + y) + f(x − y) = 2f(x) + 2f(y), f(x + y + z) + f(x − y) + f(y − z) + f(z − x) = 3f(x) + 3f(y) + 3f(z), f(x + y + z) + f(x) + f(y) + f(z) = f(x + y) + f(y + z) + f(z + x) are ...
Gwang Hui Kim
wiley   +1 more source

Quadratic functional equations of Pexider type

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 24, Issue 5, Page 351-359, 2000., 2000
First, the quadratic functional equation of Pexider type will be solved. By applying this result, we will also solve some functional equations of Pexider type which are closely associated with the quadratic equation.
Soon-Mo Jung
wiley   +1 more source

A Parametric Functional Equation Originating from Number Theory

open access: yesAnnales Mathematicae Silesianae, 2022
Let S be a semigroup and α, β ∈ ℝ. The purpose of this paper is to determine the general solution f : ℝ2 → S of the following parametric functional equation f(x1+x2+αy1y2,x1y2+x2y1+βy1y2)=f(x1,y1)f(x2,y2),f\left( {{x_1} + {x_2} + \alpha {y_1}{y_2},{x_1 ...
Mouzoun Aziz   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy