Results 221 to 230 of about 2,162,733 (357)

3D lip shapes from video: A combined physical–statistical model [PDF]

open access: green, 1998
Sumit Basu, Nuria Oliver, Alex Pentland
openalex   +1 more source

Bioengineering facets of the tumor microenvironment in 3D tumor models: insights into cellular, biophysical and biochemical interactions

open access: yesFEBS Open Bio, EarlyView.
The tumor microenvironment is a dynamic, multifaceted complex system of interdependent cellular, biochemical, and biophysical components. Three‐dimensional in vitro models of the tumor microenvironment enable a better understanding of these interactions and their impact on cancer progression and therapeutic resistance.
Salma T. Rafik   +3 more
wiley   +1 more source

METTL3 knockout accelerates hepatocarcinogenesis via inhibiting endoplasmic reticulum stress response

open access: yesFEBS Open Bio, EarlyView.
Liver‐specific knockout of N6‐methyladenosine (m6A) methyltransferase METTL3 significantly accelerated hepatic tumor initiation under various oncogenic challenges, contrary to the previously reported oncogenic role of METTL3 in liver cancer cell lines or xenograft models. Mechanistically, METTL3 deficiency reduced m6A deposition on Manf transcripts and
Bo Cui   +15 more
wiley   +1 more source

Soman induces endoplasmic reticulum stress and apoptosis of cerebral organoids via the GRP78‐ATF6‐CHOP signaling pathway

open access: yesFEBS Open Bio, EarlyView.
Cerebral organoids were employed as a novel model to explore the neurotoxicity of soman. Soman inhibited acetylcholinesterase activity, increased cell apoptosis and upregulated endoplasmic reticulum (ER) stress markers glucose‐regulated protein 78 (GRP78), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP).
Yue Wei   +7 more
wiley   +1 more source

Automatic assessment of 3D modeling exams [PDF]

open access: yes, 2012
Demartini, Claudio Giovanni   +3 more
core   +1 more source

Downregulation of O‐GlcNAcylation enhances etoposide‐induced p53‐mediated apoptosis in HepG2 human liver cancer cells

open access: yesFEBS Open Bio, EarlyView.
Etoposide, a topoisomerase II inhibitor, reduces O‐GlcNAcylation in HepG2 liver cancer cells. Further inhibition of O‐GlcNAc transferase by OSMI‐1 enhanced etoposide‐induced apoptosis, lowering the IC50 for viability and increasing the EC50 for cytotoxicity.
Jaehoon Lee   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy