Results 241 to 250 of about 2,478,339 (383)
Hyaluronic acid‐modified bimetallic peroxide nanocomposites (MgO2‐CuO2@HA) are designed for synergistic tumor therapy. The nanocomposites release Mg2+, H2O2, and Cu2+ in tumor cells, induce cuproptosis via Cu+‐mediated protein aggregation, and activate pyroptosis through caspase‐1/gasdermin D pathways for inducing immunogenic cell death, collectively ...
Guanting He +8 more
wiley +1 more source
Cleavage‐Resistant CYLD Protects Against Autoimmune Hepatitis
Proteolytic cleavage of the deubiquitinase CYLD emerges as a critical driver of autoimmune hepatitis. TNFα‐induced CYLD loss in macrophages amplifies S100A9‐triggered MAPK activation, leading to excessive chemokine production and hepatic inflammation. Pharmacological inhibition of MEK signaling effectively attenuates experimental disease, highlighting ...
Han Liu +13 more
wiley +1 more source
Correction to: Granulopoietic Dysregulation in a Patient-Tailored Mouse Model of Barth Syndrome. [PDF]
Sierra Potchanant EA +12 more
europepmc +1 more source
This study demonstrates that polyC‐RNA‐binding protein 1 (PCBP1) in ventral hippocampal astrocytes modulates depressive‐like behaviors by regulating glutathione peroxidase 4‐mediated ferroptosis and synaptic glutamatergic transmission. PCBP1 overexpression intervention in the chronic unpredictable mild stress model rescues behavioral deficits ...
Jinyu Zhang +15 more
wiley +1 more source
Correction to: Mesenteric approach for borderline resectable pancreatic head cancer: a 13-year retrospective cohort study. [PDF]
Wang FF, He Q, Lyu SC.
europepmc +1 more source
Utilizing dual‐site fiber photometry, this study examines cortico‐striatal coupling with cell type resolution, identifying behavior‐ and cell type‐specific cortico striatal decoupling and its dopamine‐dependent mechanism in a Parkinson's disease mouse model.
Xu‐Ran Yao +4 more
wiley +1 more source
PPAR δ-87T/C plays a critical role in the development of colorectal cancer. [PDF]
Dong B +12 more
europepmc +1 more source
Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro +6 more
wiley +1 more source

