Results 11 to 20 of about 1,618 (104)
In this article, we define a kind of truncated maximal function on the Heisenberg space by Mγcfx=sup0
Xiang Li +2 more
wiley +1 more source
Commutators on Weighted Morrey Spaces on Spaces of Homogeneous Type
In this paper, we study the boundedness and compactness of the commutator of Calderón– Zygmund operators T on spaces of homogeneous type (X, d, µ) in the sense of Coifman and Weiss.
Gong Ruming +3 more
doaj +1 more source
In this article, we show continuity of commutators of Calderón-Zygmund operators [b,T]\left[b,T] with BMO functions in generalized Orlicz-Morrey spaces MΦ,φ(Rn){M}^{\Phi ,\varphi }\left({{\mathbb{R}}}^{n}). We give necessary and sufficient conditions for
Guliyev V. S. +2 more
doaj +1 more source
Some estimates for the commutators of multilinear maximal function on Morrey-type space
In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space.
Yu Xiao, Zhang Pu, Li Hongliang
doaj +1 more source
The main purpose of this article is to establish some new characterizations of the (variable) Lipschitz spaces in terms of the boundedness of commutator of multilinear fractional Calderón-Zygmund integral operators in the context of the variable exponent
Zhang Pu, Wu Jianglong
doaj +1 more source
A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderon-Zygmund decomposition [PDF]
Given a doubling measure $\mu$ on $R^d$, it is a classical result of harmonic analysis that Calderon-Zygmund operators which are bounded in $L^2(\mu)$ are also of weak type (1,1).
Tolsa, Xavier
core +3 more sources
Fractional integral operators on Herz spaces for supercritical indices
We consider the boundedness of fractional integral operators Iβ on Herz spaces Kqα,p(Rn), where q ≥ n/β. We introduce a new function space that is a variant of Lipschitz space. Our results are optimal.
Yasuo Komori-Furuya, Hans Triebel
wiley +1 more source
θ-type Calderón-Zygmund Operators and Commutators in Variable Exponents Herz space
The aim of this paper is to deal with the boundedness of the θ-type Calderón-Zygmund operators and their commutators on Herz spaces with two variable exponents p(⋅), q(⋅).
Yang Yanqi, Tao Shuangping
doaj +1 more source
The dimension-free estimate for the truncated maximal operator
We mainly study the dimension-free Lp{L}^{p}-inequality of the truncated maximal operator Mnaf(x)=supt>01∣Ba1∣∫Ba1f(x−ty)dy,{M}_{n}^{a}f\left(x)=\mathop{\sup }\limits_{t\gt 0}\frac{1}{| {B}_{a}^{1}| }\left|\mathop{\int }\limits_{{B}_{a}^{1}}f\left(x-ty){\
Nie Xudong, Wang Panwang
doaj +1 more source
Marcinkiewicz integrals with variable kernels on Hardy and weak Hardy spaces
In this article, we consider the Marcinkiewicz integrals with variable kernels defined by μΩ(f)(x)=(∫0∞|∫|x−y|≤tΩ(x,x−y)|x−y|n−1f(y)dy|2dtt3)12/, where Ω(x,z)∈L∞(ℝn)×Lq(Sn−1) for q > 1. We prove that the operator μΩ is bounded from Hardy space, Hp(ℝn), to Lp(ℝn) space; and is bounded from weak Hardy space, Hp,∞(ℝn), to weak Lp(ℝn) space for max{2n21n ...
Xiangxing Tao +3 more
wiley +1 more source

