Fractional integral operators on Herz spaces for supercritical indices
We consider the boundedness of fractional integral operators Iβ on Herz spaces Kqα,p(Rn), where q ≥ n/β. We introduce a new function space that is a variant of Lipschitz space. Our results are optimal.
Yasuo Komori-Furuya, Hans Triebel
wiley +1 more source
Variation inequalities related to Schrödinger operators on weighted Morrey spaces
This paper establishes the boundedness of the variation operators associated with Riesz transforms and commutators generated by the Riesz transforms and BMO-type functions in the Schrödinger setting on the weighted Morrey spaces related to certain ...
Zhang Jing
doaj +1 more source
The main purpose of this article is to establish some new characterizations of the (variable) Lipschitz spaces in terms of the boundedness of commutator of multilinear fractional Calderón-Zygmund integral operators in the context of the variable exponent
Zhang Pu, Wu Jianglong
doaj +1 more source
On the Triebel-Lizorkin space boundedness of Marcinkiewicz integrals along compound surfaces
In this paper the author present the boundedness of Marcinkiewicz integral operators associated to compound surfaces with rough kernels given by h ∈ Δγ(R+) and Ω ∈ L(log+ L)1/2(Sn−1 ...
Feng Liu
semanticscholar +1 more source
Marcinkiewicz integrals with variable kernels on Hardy and weak Hardy spaces
In this article, we consider the Marcinkiewicz integrals with variable kernels defined by μΩ(f)(x)=(∫0∞|∫|x−y|≤tΩ(x,x−y)|x−y|n−1f(y)dy|2dtt3)12/, where Ω(x,z)∈L∞(ℝn)×Lq(Sn−1) for q > 1. We prove that the operator μΩ is bounded from Hardy space, Hp(ℝn), to Lp(ℝn) space; and is bounded from weak Hardy space, Hp,∞(ℝn), to weak Lp(ℝn) space for max{2n21n ...
Xiangxing Tao +3 more
wiley +1 more source
The dimension-free estimate for the truncated maximal operator
We mainly study the dimension-free Lp{L}^{p}-inequality of the truncated maximal operator Mnaf(x)=supt>01∣Ba1∣∫Ba1f(x−ty)dy,{M}_{n}^{a}f\left(x)=\mathop{\sup }\limits_{t\gt 0}\frac{1}{| {B}_{a}^{1}| }\left|\mathop{\int }\limits_{{B}_{a}^{1}}f\left(x-ty){\
Nie Xudong, Wang Panwang
doaj +1 more source
A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderon-Zygmund decomposition [PDF]
Given a doubling measure $\mu$ on $R^d$, it is a classical result of harmonic analysis that Calderon-Zygmund operators which are bounded in $L^2(\mu)$ are also of weak type (1,1).
Tolsa, Xavier
core +3 more sources
Atomic, molecular and wavelet decomposition of generalized 2‐microlocal Besov spaces
We introduce generalized 2‐microlocal Besov spaces and give characterizations in decomposition spaces by atoms, molecules and wavelets. We apply the wavelet decomposition to prove that the 2‐microlocal spaces are invariant under the action of pseudodifferential operators of order 0.
Henning Kempka, Hans Triebel
wiley +1 more source
Zygmund inequality of the conjugate function on Morrey-Zygmund spaces
We generalize the Zygmund inequality for the conjugate function to the Morrey type spaces defined on the unit circle T. We obtain this extended Zygmund inequality by introducing the Morrey-Zygmund space on T.
Yee Tat-Leung, Ho Kwok-Pun
doaj +1 more source
Some estimates for commutators of bilinear pseudo-differential operators
We obtain a class of commutators of bilinear pseudo-differential operators on products of Hardy spaces by applying the accurate estimates of the Hörmander class. And we also prove another version of these types of commutators on Herz-type spaces.
Yang Yanqi, Tao Shuangping
doaj +1 more source

