Results 31 to 40 of about 1,618 (104)
Characterization of Riesz and Bessel potentials on variable Lebesgue spaces
Riesz and Bessel potential spaces are studied within the framework of the Lebesgue spaces with variable exponent. It is shown that the spaces of these potentials can be characterized in terms of convergence of hypersingular integrals, if one assumes that the exponent satisfies natural regularity conditions. As a consequence of this characterization, we
Alexandre Almeida +2 more
wiley +1 more source
Boundedness of multilinear operators on Triebel‐Lizorkin spaces
The purpose of this paper is to study the boundedness in the context of Triebel‐Lizorkin spaces for some multilinear operators related to certain convolution operators. The operators include Littlewood‐Paley operator, Marcinkiewicz integral, and Bochner‐Riesz operator.
Liu Lanzhe
wiley +1 more source
Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
We establish local Calderón–Zygmund estimates for solutions to certain parabolic problems with irregular obstacles and nonstandard p(x,t)${p(x,t)}$-growth.
Erhardt André
doaj +1 more source
Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications
In this article, we introduce anisotropic mixed-norm Herz spaces K˙q→,a→α,p(Rn){\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and Kq→,a→α,p(Rn){K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb ...
Zhao Yichun, Zhou Jiang
doaj +1 more source
Continuity for some multilinear operators of integral operators on Triebel‐Lizorkin spaces
The continuityfor some multilinear operators related to certain fractional singular integral operators on Triebel‐Lizorkin spaces is obtained. The operators include Calderon‐Zygmund singular integral operator and fractional integral operator.
Liu Lanzhe
wiley +1 more source
Boundedness of vector-valued B-singular integral operators in Lebesgue spaces
We study the vector-valued B-singular integral operators associated with the Laplace-Bessel differential operator △B=∑k=1n−1∂2∂xk2+(∂2∂xn2+2vxn∂∂xn),v>0. $$\triangle_{B}=\sum\limits_{k=1}^{n-1}\frac{\partial^{2}}{\partial x_{k}^{2}}+(\frac{\partial^{2}}{\
Keles Seyda, Omarova Mehriban N.
doaj +1 more source
Let (X,d,μ)\left({\mathcal{X}},d,\mu ) be a non-homogeneous metric measure space satisfying the geometrically doubling and upper doubling conditions. In this setting, we first introduce a generalized Morrey space Mpu(μ){M}_{p}^{u}\left(\mu ), where 1 ...
Lu Guanghui +2 more
doaj +1 more source
Rough singular integrals on product spaces
We study the mapping properties of singular integral operators defined by mappings of finite type. We prove that such singular integral operators are bounded on the Lebesgue spaces under the condition that the singular kernels are allowed to be in certain block spaces.
Ahmad Al-Salman, Hussain Al-Qassem
wiley +1 more source
Marcinkiewicz integrals along subvarieties on product domains
We study the Lp mapping properties of a class of Marcinkiewicz integral operators on product domains with rough kernels supported by subvarieties.
Ahmad Al-Salman
wiley +1 more source
In this article, we consider the Laplace-Bessel differential operatorΔBk,n=∑i=1k∂2∂xi2+γixi∂∂xi+∑i=k+1n∂2∂xi2,γ1>0,…,γk>0.{\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}
Hasanov Javanshir J. +2 more
doaj +1 more source

