Results 71 to 80 of about 1,620 (102)
In this article, we study the generalized parabolic parametric Marcinkiewicz integral operators ℳΩ,h,Φ,λ(r){ {\mathcal M} }_{{\Omega },h,{\Phi },\lambda }^{(r)} related to polynomial compound curves.
Ali Mohammed, Katatbeh Qutaibeh
doaj +1 more source
Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces
In this paper, we study the boundedness of fractional multilinear integral operators with rough kernels TΩ,αA1,A2,…,Ak,$T_{\Omega ,\alpha }^{{A_1},{A_2}, \ldots ,{A_k}},$ which is a generalization of the higher-order commutator of the rough fractional ...
Akbulut Ali, Hasanov Amil
doaj +1 more source
Solitons in gauge theories: Existence and dependence on the charge
In this paper we review recent results on the existence of non-topological solitons in classical relativistic nonlinear field theories. We follow the Coleman approach, which is based on the existence of two conservation laws, energy and charge.
Bonanno Claudio
doaj +1 more source
Let T be the singular integral operator with variable kernel defined by Tf(x)=p.v.∫RnΩ(x,x−y)|x−y|nf(y)dy$$\begin{array}{} \displaystyle Tf(x)= p.v. \int\limits_{\mathbb{R}^{n}}\frac{{\it\Omega}(x,x-y)}{|x-y|^{n}}f(y)\text{d}y \end{array} $$
Yang Yanqi, Tao Shuangping
doaj +1 more source
Let (𝒳, d, μ) be a space of homogeneous type, in the sense of Coifman and Weiss, with the upper dimension ω. Assume that η ∈(0, 1) is the smoothness index of the wavelets on 𝒳 constructed by Auscher and Hytönen.
Zhou Xilin, He Ziyi, Yang Dachun
doaj +1 more source
Asymptotics of orthogonal polynomials via the Koosis theorem
The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomials for which
Nazarov, F., Volberg, A., Yuditskii, P.
core +1 more source
Grand Triebel-Lizorkin-Morrey spaces
This article studies the Triebel-Lizorkin-type spaces built on grand Morrey spaces on Euclidean spaces. We establish a number of characterizations on the grand Triebel-Lizorkin-Morrey spaces such as the Peetre maximal function characterizations, the ...
Ho Kwok-Pun
doaj +1 more source
Matrix weights and a maximal function with exponent 3/2
We build an example of a simple sparse operator for which its norm with scalar A 2 weight has linear estimate in [w]A2 ${\left[w\right]}_{{A}_{2}}$ , but whose norm in matrix setting grows at least as [W]A23/2 ${\left[W\right]}_{{\mathbf{A}}_{2}}^{3/2}$
Treil Sergei, Volberg Alexander
doaj +1 more source
Let G{\mathcal{G}} be a stratified Lie group, and let {Xj}1≤j≤n1{\left\{{X}_{j}\right\}}_{1\le j\le {n}_{1}} be a basis of the left-invariant vector fields of degree one on G{\mathcal{G}} and Δ=−∑j=1n1Xj2\Delta =-{\sum }_{j=1}^{{n}_{1}}{X}_{j}^{2} be the
Han Xueting, Chen Yanping
doaj +1 more source
Lp estimates for maximal functions along surfaces of revolution on product spaces
This paper is concerned with establishing Lp estimates for a class of maximal operators associated to surfaces of revolution with kernels in Lq(Sn−1 × Sm−1), q > 1.
Ali Mohammed, Reyyashi Musa
doaj +1 more source