Results 1 to 10 of about 18 (18)
From Hardy to Rellich inequalities on graphs
Abstract We show how to deduce Rellich inequalities from Hardy inequalities on infinite graphs. Specifically, the obtained Rellich inequality gives an upper bound on a function by the Laplacian of the function in terms of weighted norms. These weights involve the Hardy weight and a function which satisfies an eikonal inequality.
Matthias Keller+2 more
wiley +1 more source
In this article, we define a kind of truncated maximal function on the Heisenberg space by Mγcfx=sup0
Xiang Li+2 more
wiley +1 more source
Sparse bilinear forms for Bochner Riesz multipliers and applications
Abstract We use the very recent approach developed by Lacey in [An elementary proof of the A2 Bound, Israel J. Math., to appear] and extended by Bernicot, Frey and Petermichl in [Sharp weighted norm estimates beyond Calderón‐Zygmund theory, Anal. PDE 9 (2016) 1079–1113], in order to control Bochner–Riesz operators by a sparse bilinear form. In this way,
Cristina Benea+2 more
wiley +1 more source
Let χ be a doubling metric measure space and ρ an admissible function on χ. In this paper, the authors establish some equivalent characterizations for the localized Morrey‐Campanato spaces ερα,p(χ) and Morrey‐Campanato‐BLO spaces ε̃ρα,p(χ) when α ∈ (−∞, 0) and p ∈ [1, ∞).
Haibo Lin+3 more
wiley +1 more source
The Boundedness of Commutators of Singular Integral Operators with Besov Functions
In this paper, we prove the boundedness of commutator generated by singular integral operator and Besov function from some Ld to Triebel‐Lizorkin spaces.
Xionglue Gao+2 more
wiley +1 more source
Endpoint estimates for homogeneous Littlewood‐Paley g‐functions with non‐doubling measures
Let µ be a nonnegative Radon measure on ℝd which satisfies the growth condition that there exist constants C0 > 0 and n ∈ (0, d] such that for all x ∈ ℝd and r > 0, μ(B(x, r)) ≤ C0rn, where B(x, r) is the open ball centered at x and having radius r .
Dachun Yang, Dongyong Yang, Hans Triebel
wiley +1 more source
The Riesz “rising sun” lemma for arbitrary Borel measures with some applications
The Riesz “rising sun” lemma is proved for arbitrary locally finite Borel measures on the real line. The result is applied to study an attainability problem of the exact constant in a weak (1, 1) type inequality for the corresponding Hardy‐Littlewood maximal operator.
Lasha Ephremidze+3 more
wiley +1 more source
The maximal operator in weighted variable spaces Lp(⋅)
We study the boundedness of the maximal operator in the weighted spaces Lp(⋅)(ρ) over a bounded open set Ω in the Euclidean space ℝn or a Carleson curve Γ in a complex plane. The weight function may belong to a certain version of a general Muckenhoupt‐type condition, which is narrower than the expected Muckenhoupt condition for variable exponent, but ...
Vakhtang Kokilashvili+3 more
wiley +1 more source
Weighted norm inequalities and indices
We extend and simplify several classical results on weighted norm inequalities for classical operators acting on rearrangement invariant spaces using the theory of indices. As an application we obtain necessary and sufficient conditions for generalized Hardy type operators to be bounded on ?p(w), ?p,8(w), Gp(w) and Gp,8(w).
Joaquim Martín+2 more
wiley +1 more source
Strang‐Fix theory for approximation order in weighted Lp‐spaces and Herz spaces
In this paper, we study the Strang‐Fix theory for approximation order in the weighted Lp ‐spaces and Herz spaces.
Naohito Tomita, Hans G. Feichtinger
wiley +1 more source