Results 31 to 40 of about 2,482 (145)
On the degree of compactness of embeddings between weighted modulation spaces
The paper investigates the asymptotic behaviour of entropy and approximation numbers of compact embeddings between weighted modulation spaces.
Aicke Hinrichs+3 more
wiley +1 more source
Notes on the Herz-type Hardy spaces of variable smoothness and integrability
The aim of this paper is twofold. First we give a new norm equivalents of the variable Herz spaces Kα(·) p(·),q(·) (R n) and K̇α(·) p(·),q(·) (R n) . Secondly we use these results to prove the atomic decomposition for Herz-type Hardy spaces of variable ...
D. Drihem, Fakhreddine Seghiri
semanticscholar +1 more source
Commutators of fractional integrals on martingale Morrey spaces
On martingale Morrey spaces we give necessary and sufficient conditions for the boundedness and compactness of the commutator generated by the fractional integral and a function in the martingale Campanato space.
E. Nakai, Gaku Sadasue
semanticscholar +1 more source
The main purpose of this article is to establish some new characterizations of the (variable) Lipschitz spaces in terms of the boundedness of commutator of multilinear fractional Calderón-Zygmund integral operators in the context of the variable exponent
Zhang Pu, Wu Jianglong
doaj +1 more source
A construction of Triebel‐Lizorkin type spaces associated with flexible decompositions of the frequency space ℝd is considered. The class of admissible frequency decompositions is generated by a one parameter group of (anisotropic) dilations on ℝd and a suitable decomposition function.
Lasse Borup+2 more
wiley +1 more source
We consider the generalized weighted Morrey spaces M p(·),φ ω (Ω) with variable exponent p(x) and a general function φ(x,r) defining the Morrey-type norm.
V. Guliyev+2 more
semanticscholar +1 more source
The aim of this paper is the study of the dual of modulation spaces Mp,q(Rd) for 0 < p, q < ∞.
Masaharu Kobayashi, Hans Triebel
wiley +1 more source
Hardy type inequality in variable Lebesgue spaces [PDF]
We prove that in variable exponent spaces $L^{p(\cdot)}(\Omega)$, where $p(\cdot)$ satisfies the log-condition and $\Omega$ is a bounded domain in $\mathbf R^n$ with the property that $\mathbf R^n \backslash \bar{\Omega}$ has the cone property, the ...
Rafeiro, Humberto, Samko, Stefan
core +3 more sources
Modulation spaces Mp,q for 0 < p, q?8
The purpose of this paper is to construct modulation spaces Mp,q(Rd) for general 0 < p, q?8, which coincide with the usual modulation spaces when 1?p,q?8, and study their basic properties including their completeness. Given any g?S(Rd) such that supp g ???{?||?|?1} and ?k?Zd g (?-ak)=1, our modulation space consists of all tempered distributions f such
Masaharu Kobayashi, Hans Triebel
wiley +1 more source
In this paper we prove an O’Neil inequality for the convolution operator (G-convolution) associated with the Gegenbauer differential operator Gλ. By using an O’Neil inequality for rearrangements we obtain a pointwise rearrangement estimate of the G ...
Vagif S. Guliyev sci
semanticscholar +1 more source