Results 1 to 10 of about 574 (55)
Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part
Let n≥2n\ge 2 and Ω⊂Rn\Omega \subset {{\mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic equations
Yang Sibei, Yang Dachun, Yuan Wen
doaj +1 more source
Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition.
Zhang Junqiang, Yang Dachun, Yang Sibei
doaj +1 more source
Smoothness of solutions of a convolution equation of restricted type on the sphere
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{align*}a\
Diogo Oliveira e Silva, René Quilodrán
doaj +1 more source
Through conformal map, isoperimetric inequalities are equivalent to the Hardy–Littlewood–Sobolev (HLS) inequalities involved with the Poisson-type kernel on the upper half space.
Tao Chunxia
doaj +1 more source
Examples of non-Dini domains with large singular sets
Let uu be a nontrivial harmonic function in a domain D⊂RdD\subset {{\mathbb{R}}}^{d}, which vanishes on an open set of the boundary. In a recent article, we showed that if DD is a C1{C}^{1}-Dini domain, then, within the open set, the singular set of uu ...
Kenig Carlos, Zhao Zihui
doaj +1 more source
Analytical and numerical analysis of damped harmonic oscillator model with nonlocal operators
Nonlocal operators with different kernels were used here to obtain more general harmonic oscillator models. Power law, exponential decay, and the generalized Mittag-Leffler kernels with Delta-Dirac property have been utilized in this process.
Alharthi Nadiyah Hussain+2 more
doaj +1 more source
We establish new Strichartz estimates for orthonormal families of initial data in the case of the wave, Klein–Gordon and fractional Schrödinger equations.
Neal Bez, Sanghyuk Lee, Shohei Nakamura
doaj +1 more source
An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces
It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate.
Martínez Ángel D., Spector Daniel
doaj +1 more source
Estimates for evolutionary partial differential equations in classical function spaces
We establish new local and global estimates for evolutionary partial differential equations in classical Banach and quasi-Banach spaces that appear most frequently in the theory of partial differential equations.
Alejandro J. Castro+3 more
doaj +1 more source
Quadratic Klein-Gordon equations with a potential in one dimension
This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological) solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely only on Strichartz or ...
Pierre Germain, Fabio Pusateri
doaj +1 more source