Results 101 to 110 of about 2,707 (136)
Some estimates for imaginary powers of the Laplace operator in variable Lebesgue spaces and applications [PDF]
In this paper we study some estimates of norms in variable exponent Lebesgue spaces for a singular integral operators that are imaginary powers of the Laplace operator in $\R^n$. Using Mellin transform argument, from this estimates we obtain boundedness for a family of maximal operators in variable exponent Lebesgue spaces, which are closely related to
arxiv
Non-ideal sampling in shift-invariant spaces associated with quadratic-phase Fourier transforms
Non-ideal sampling has nourished as one of the most attractive alternatives to classical sampling, which relies on shift-invariant spaces. The present study focuses on investigating the non-ideal sampling in shift-invariant spaces associated with the ...
Waseem Z. Lone+5 more
doaj
BMO and the John-Nirenberg Inequality on Measure Spaces
We study the space BMO𝒢 (𝕏) in the general setting of a measure space 𝕏 with a fixed collection 𝒢 of measurable sets of positive and finite measure, consisting of functions of bounded mean oscillation on sets in 𝒢.
Dafni Galia, Gibara Ryan, Lavigne Andrew
doaj +1 more source
The proportional UAP characterizes weak Hilbert spaces [PDF]
We prove that a Banach space has the uniform approximation property with proportional growth of the uniformity function iff it is a weak Hilbert space.
arxiv
A new perspective on the Riesz potential
This paper offers a new perspective to look at the Riesz potential. On the one hand, it is shown that not only 𝔏q,qp-1(n-αp)∩𝔏p,κ-αp\mathfrak{L}^{q,qp^{-1}(n-\alpha p)}\cap\mathfrak{L}^{p,\kappa-\alpha p} contains IαLp,κ{I_{\alpha}L^{p,\kappa ...
Xiao Jie
doaj +1 more source
Traces of Subharmonic Functions to Fractal Sets [PDF]
We study traces of a class of subharmonic functions to Ahlfors regular subsets of $\Co^{n}$. In particular, we establish for the traces a generalized BMO-property and the reverse H\"{o}lder inequality.
arxiv
A note on lower bounds of martingale measure densities
For a given element $f\in L^1$ and a convex cone $C\subset L^\infty$, $C\cap L^\infty_+=\{0\}$ we give necessary and sufficient conditions for the existence of an element $g\ge f$ lying in the polar of $C$. This polar is taken in $(L^\infty)^*$ and in $L^
Rokhlin, Dmitry, Schachermayer, Walter
core +1 more source
Extensions of Weak-Type Multipliers [PDF]
In this paper we prove that if $\Lambda\in M_p(\mathbb R^N)$ and has compact support then $\Lambda$ is a weak summability kernel for $1
Commutators of singular integrals on generalized $L^p$ spaces with variable exponent [PDF]
A classical theorem of Coifman, Rochberg, and Weiss on commutators of singular integrals is extended to the case of generalized $L^p$ spaces with variable exponent.
arxiv
In this paper we introduce the symmetric Besov-Bessel spaces. Next, we give a Sonine formula for generalized Bessel functions. Finally, we give a characterization of these spaces using the Bochner-Riesz means.
Houissa Khadija, Sifi Mohamed
doaj +1 more source