Results 1 to 10 of about 1,954 (84)

Improved fractional Trudinger-Moser inequalities on bounded intervals and the existence of their extremals

open access: yesAdvanced Nonlinear Studies, 2023
Let II be a bounded interval of R{\mathbb{R}} and λ1(I){\lambda }_{1}\left(I) denote the first eigenvalue of the nonlocal operator (−Δ)14{(-\Delta )}^{\tfrac{1}{4}} with the Dirichlet boundary.
Chen Lu, Wang Bohan, Zhu Maochun
doaj   +1 more source

Entropy and renormalized solutions for some nonlinear anisotropic elliptic equations with variable exponents and L1-data

open access: yesMoroccan Journal of Pure and Applied Analysis, 2021
We prove in this paper some existence and unicity results of entropy and renormalized solutions for some nonlinear elliptic equations with general anisotropic diffusivities and variable exponents. The data are assumed to be merely integrable.
Moumni Mostafa El, Mohamed Deval Sidi
doaj   +1 more source

Optimality of Serrin type extension criteria to the Navier-Stokes equations

open access: yesAdvances in Nonlinear Analysis, 2021
We prove that a strong solution u to the Navier-Stokes equations on (0, T) can be extended if either u ∈ Lθ(0, T; U˙∞,1/θ,∞−α$\begin{array}{} \displaystyle \dot{U}^{-\alpha}_{\infty,1/\theta,\infty} \end{array}$) for 2/θ + α = 1, 0 < α < 1 or u ∈ L2(0, T;
Farwig Reinhard, Kanamaru Ryo
doaj   +1 more source

Concentration-Compactness Principle for Trudinger–Moser’s Inequalities on Riemannian Manifolds and Heisenberg Groups: A Completely Symmetrization-Free Argument

open access: yesAdvanced Nonlinear Studies, 2021
The concentration-compactness principle for the Trudinger–Moser-type inequality in the Euclidean space was established crucially relying on the Pólya–Szegő inequality which allows to adapt the symmetrization argument.
Li Jungang, Lu Guozhen, Zhu Maochun
doaj   +1 more source

Admissibility versus Ap-Conditions on Regular Trees

open access: yesAnalysis and Geometry in Metric Spaces, 2020
We show that the combination of doubling and (1, p)-Poincaré inequality is equivalent to a version of the Ap-condition on rooted K-ary trees.
Nguyen Khanh Ngoc, Wang Zhuang
doaj   +1 more source

Small perturbations of critical nonlocal equations with variable exponents

open access: yesDemonstratio Mathematica, 2023
In this article, we are concerned with the following critical nonlocal equation with variable exponents: (−Δ)p(x,y)su=λf(x,u)+∣u∣q(x)−2uinΩ,u=0inRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u&
Tao Lulu, He Rui, Liang Sihua
doaj   +1 more source

Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains

open access: yesAdvances in Nonlinear Analysis, 2021
Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition.
Zhang Junqiang, Yang Dachun, Yang Sibei
doaj   +1 more source

Steklov problems for the p−Laplace operator involving Lq-norm

open access: yesMoroccan Journal of Pure and Applied Analysis, 2022
In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form {Δpu=|u|p-2uin Ω,|∇u|p-2∂u∂v=λ‖u‖q,∂Ωp-q|u|q-2uon ∂Ω,\left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,
Alaoui My Driss Morchid   +2 more
doaj   +1 more source

Spectral Stability of the Neumann Laplacian [PDF]

open access: yes, 2001
We prove the equivalence of Hardy- and Sobolev-type inequalities, certain uniform bounds on the heat kernel and some spectral regularity properties of the Neumann Laplacian associated with an arbitrary region of finite measure in Euclidean space. We also
Burenkov, V. I., Davies, E. B.
core   +2 more sources

Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials, I [PDF]

open access: yes, 2004
36 pages, no figures.-- MSC2000 codes: 41A10, 46E35, 46G10.-- Part II of this paper published in: Approx. Theory Appl. 18(2): 1-32 (2002), available at: http://e-archivo.uc3m.es/handle/10016/6483MR#: MR2047389 (2005k:42062)Zbl#: Zbl 1081.42024In this ...
Pestana, Domingo   +3 more
core   +3 more sources

Home - About - Disclaimer - Privacy