Results 1 to 10 of about 1,937 (75)
Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition.
Zhang Junqiang, Yang Dachun, Yang Sibei
doaj +1 more source
Steklov problems for the p−Laplace operator involving Lq-norm
In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form {Δpu=|u|p-2uin Ω,|∇u|p-2∂u∂v=λ‖u‖q,∂Ωp-q|u|q-2uon ∂Ω,\left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,
Alaoui My Driss Morchid+2 more
doaj +1 more source
Concentration-compactness principle associated with Adams' inequality in Lorentz-Sobolev space
The concentration-compactness principle of Lions type in Euclidean space relies on the Pólya-Szegö inequality, which is not available in non-Euclidean settings.
Li Dongliang, Zhu Maochun
doaj +1 more source
A Generalized Version of the Lions-Type Lemma
In this short paper, I recall the history of dealing with the lack of compactness of a sequence in the case of an unbounded domain and prove the vanishing Lions-type result for a sequence of Lebesgue-measurable functions.
Chmara Magdalena
doaj +1 more source
We investigate the existence of non-trivial weak solutions for the following p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators {M(σ)(Δp(x)2u-Δp(x)u)=λϑ(x)|u|q(x)-2u(∫Ωϑ(x)q(x)|u|q(x)dx)r in Ω,u∈W2,p(.)
Jennane Mohsine, Alaoui My Driss Morchid
doaj +1 more source
In this article, we develop a new set of results based on a non-local gradient jointly inspired by the Riesz ss-fractional gradient and peridynamics, in the sense that its integration domain depends on a ball of radius δ>0\delta \gt 0 (horizon of ...
Bellido José Carlos+2 more
doaj +1 more source
Trace Operators on Regular Trees
We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.
Koskela Pekka+2 more
doaj +1 more source
The concentration-compactness principle for the Trudinger–Moser-type inequality in the Euclidean space was established crucially relying on the Pólya–Szegő inequality which allows to adapt the symmetrization argument.
Li Jungang, Lu Guozhen, Zhu Maochun
doaj +1 more source
Optimality of Serrin type extension criteria to the Navier-Stokes equations
We prove that a strong solution u to the Navier-Stokes equations on (0, T) can be extended if either u ∈ Lθ(0, T; U˙∞,1/θ,∞−α$\begin{array}{} \displaystyle \dot{U}^{-\alpha}_{\infty,1/\theta,\infty} \end{array}$) for 2/θ + α = 1, 0 < α < 1 or u ∈ L2(0, T;
Farwig Reinhard, Kanamaru Ryo
doaj +1 more source
We prove in this paper some existence and unicity results of entropy and renormalized solutions for some nonlinear elliptic equations with general anisotropic diffusivities and variable exponents. The data are assumed to be merely integrable.
Moumni Mostafa El, Mohamed Deval Sidi
doaj +1 more source