Results 31 to 40 of about 355 (125)

A homogeneity property for Besov spaces

open access: yesJournal of Function Spaces, Volume 5, Issue 2, Page 123-132, 2007., 2007
A homogeneity property for some Besov spaces Bp,qs is proved. An analogous property for some Fp,qs spaces is already known.
António M. Caetano   +3 more
wiley   +1 more source

Small perturbations of critical nonlocal equations with variable exponents

open access: yesDemonstratio Mathematica, 2023
In this article, we are concerned with the following critical nonlocal equation with variable exponents: (−Δ)p(x,y)su=λf(x,u)+∣u∣q(x)−2uinΩ,u=0inRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u&
Tao Lulu, He Rui, Liang Sihua
doaj   +1 more source

Trace theorems for Sobolev‐Slobodeckij spaces with or without weights

open access: yesJournal of Function Spaces, Volume 5, Issue 3, Page 243-268, 2007., 2007
We prove that the well‐known trace theorem for weighted Sobolev spaces holds true under minimal regularity assumptions on the domain. Using this result, we prove the existence of a bounded linear right inverse of the trace operator for Sobolev‐Slobodeckij spaces Wps(Ω) when s − 1/p is an integer.
Doyoon Kim, Hans Triebel
wiley   +1 more source

On the variation of the discrete maximal operator

open access: yes, 2020
In this note we study the endpoint regularity properties of the discrete nontangential fractional maximal operator Mα,β f (n) = sup r∈N |m−n| β r 1 (2r +1)1−α r ∑ k=−r | f (m+ k)|, where α ∈ [0,1) , β ∈ [0,∞) and N = {0,1,2, . . .
Feng Liu
semanticscholar   +1 more source

Approximation numbers of Sobolev embeddings of radial functions on isotropic manifolds

open access: yesJournal of Function Spaces, Volume 5, Issue 1, Page 27-48, 2007., 2007
We regard the compact Sobolev embeddings between Besov and Sobolev spaces of radial functions on noncompact symmetric spaces of rank one. The asymptotic formula for the behaviour of approximation numbers of these embeddings is described.
Leszek Skrzypczak   +2 more
wiley   +1 more source

On a nonlinear elliptic problems having large monotonocity with L1-data in weighted Orlicz-Sobolev spaces

open access: yesMoroccan Journal of Pure and Applied Analysis, 2019
We prove in weighted Orlicz-Sobolev spaces, the existence of entropy solution for a class of nonlinear elliptic equations of Leray-Lions type, with large monotonicity condition and right hand side f ∈ L1(Ω).
Haji Badr El   +2 more
doaj   +1 more source

Multiplicity of solutions for a class of critical Schrödinger-Poisson systems on the Heisenberg group

open access: yesOpen Mathematics, 2023
We deal with multiplicity of solutions to the following Schrödinger-Poisson-type system in this article: ΔHu−μ1ϕ1u=∣u∣2u+Fu(ξ,u,v),inΩ,−ΔHv+μ2ϕ2v=∣v∣2v+Fv(ξ,u,v),inΩ,−ΔHϕ1=u2,−ΔHϕ2=v2,inΩ,ϕ1=ϕ2=u=v=0,on∂Ω,\left\{\begin{array}{ll}{\Delta }_{H}u-{\mu }_{1}{
Li Shiqi, Song Yueqiang
doaj   +1 more source

A direct proof of Sobolev embeddings for quasi‐homogeneous Lizorkin–Triebel spaces with mixed norms

open access: yesJournal of Function Spaces, Volume 5, Issue 2, Page 183-198, 2007., 2007
The article deals with a simplified proof of the Sobolev embedding theorem for Lizorkin–Triebel spaces (that contain the Lp‐Sobolev spaces Hps as special cases). The method extends to a proof of the corresponding fact for general Lizorkin–Triebel spaces based on mixed Lp‐norms.
Jon Johnsen   +2 more
wiley   +1 more source

New classes of rearrangement‐invariant spaces appearing in extreme cases of weak interpolation

open access: yesJournal of Function Spaces, Volume 4, Issue 3, Page 275-304, 2006., 2006
We study weak type interpolation for ultrasymmetric spaces L?,E i.e., having the norm ??(t)f*(t)?E˜, where ?(t) is any quasiconcave function and E˜ is arbitrary rearrangement‐invariant space with respect to the measure d t /t. When spaces L?,E are not “too close” to the endpoint spaces of interpolation (in the sense of Boyd), the optimal interpolation ...
Evgeniy Pustylnik   +2 more
wiley   +1 more source

On one extension theorem dealing with weighted Orlicz-Slobodetskii space. Analysis on Lipschitz subgraph and Lipschitz domain

open access: yes, 2016
Having a given weight ρ(x) = τ (dist(x,∂Ω)) defined on Lipschitz boundary domain Ω and an Orlicz function Ψ , we construct the subordinated weight ω(·, ·) defined on ∂Ω×∂Ω and extension operator ExtL : Lip(∂Ω) → Lip(Ω) form Lipschitz functions defined on
A. Kałamajska, R. Dhara
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy