Results 31 to 40 of about 355 (125)
A homogeneity property for Besov spaces
A homogeneity property for some Besov spaces Bp,qs is proved. An analogous property for some Fp,qs spaces is already known.
António M. Caetano +3 more
wiley +1 more source
Small perturbations of critical nonlocal equations with variable exponents
In this article, we are concerned with the following critical nonlocal equation with variable exponents: (−Δ)p(x,y)su=λf(x,u)+∣u∣q(x)−2uinΩ,u=0inRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u&
Tao Lulu, He Rui, Liang Sihua
doaj +1 more source
Trace theorems for Sobolev‐Slobodeckij spaces with or without weights
We prove that the well‐known trace theorem for weighted Sobolev spaces holds true under minimal regularity assumptions on the domain. Using this result, we prove the existence of a bounded linear right inverse of the trace operator for Sobolev‐Slobodeckij spaces Wps(Ω) when s − 1/p is an integer.
Doyoon Kim, Hans Triebel
wiley +1 more source
On the variation of the discrete maximal operator
In this note we study the endpoint regularity properties of the discrete nontangential fractional maximal operator Mα,β f (n) = sup r∈N |m−n| β r 1 (2r +1)1−α r ∑ k=−r | f (m+ k)|, where α ∈ [0,1) , β ∈ [0,∞) and N = {0,1,2, . . .
Feng Liu
semanticscholar +1 more source
Approximation numbers of Sobolev embeddings of radial functions on isotropic manifolds
We regard the compact Sobolev embeddings between Besov and Sobolev spaces of radial functions on noncompact symmetric spaces of rank one. The asymptotic formula for the behaviour of approximation numbers of these embeddings is described.
Leszek Skrzypczak +2 more
wiley +1 more source
We prove in weighted Orlicz-Sobolev spaces, the existence of entropy solution for a class of nonlinear elliptic equations of Leray-Lions type, with large monotonicity condition and right hand side f ∈ L1(Ω).
Haji Badr El +2 more
doaj +1 more source
We deal with multiplicity of solutions to the following Schrödinger-Poisson-type system in this article: ΔHu−μ1ϕ1u=∣u∣2u+Fu(ξ,u,v),inΩ,−ΔHv+μ2ϕ2v=∣v∣2v+Fv(ξ,u,v),inΩ,−ΔHϕ1=u2,−ΔHϕ2=v2,inΩ,ϕ1=ϕ2=u=v=0,on∂Ω,\left\{\begin{array}{ll}{\Delta }_{H}u-{\mu }_{1}{
Li Shiqi, Song Yueqiang
doaj +1 more source
A direct proof of Sobolev embeddings for quasi‐homogeneous Lizorkin–Triebel spaces with mixed norms
The article deals with a simplified proof of the Sobolev embedding theorem for Lizorkin–Triebel spaces (that contain the Lp‐Sobolev spaces Hps as special cases). The method extends to a proof of the corresponding fact for general Lizorkin–Triebel spaces based on mixed Lp‐norms.
Jon Johnsen +2 more
wiley +1 more source
New classes of rearrangement‐invariant spaces appearing in extreme cases of weak interpolation
We study weak type interpolation for ultrasymmetric spaces L?,E i.e., having the norm ??(t)f*(t)?E˜, where ?(t) is any quasiconcave function and E˜ is arbitrary rearrangement‐invariant space with respect to the measure d t /t. When spaces L?,E are not “too close” to the endpoint spaces of interpolation (in the sense of Boyd), the optimal interpolation ...
Evgeniy Pustylnik +2 more
wiley +1 more source
Having a given weight ρ(x) = τ (dist(x,∂Ω)) defined on Lipschitz boundary domain Ω and an Orlicz function Ψ , we construct the subordinated weight ω(·, ·) defined on ∂Ω×∂Ω and extension operator ExtL : Lip(∂Ω) → Lip(Ω) form Lipschitz functions defined on
A. Kałamajska, R. Dhara
semanticscholar +1 more source

