Results 51 to 60 of about 355 (125)
Box dimension, oscillation and smoothness in function spaces
The aim of this paper is twofold. First we relate upper and lower box dimensions with oscillation spaces, and we develop embeddings or inclusions between oscillation spaces and Besov spaces. Secondly, given a point in the (1p, s)‐plane we determine maximal and minimal values for the upper box dimension (also the maximal value for lower box dimension ...
Abel Carvalho, Hans Triebel
wiley +1 more source
Some remarks about the summability of nonlocal nonlinear problems
In this note, we will study the problem (-Δ)psu = f(x) on Ω, u = 0 in ℝN∖Ω, where 0 < s < 1, (-Δ)ps is the nonlocal p-Laplacian defined below, Ω is a smooth bounded domain. The main point studied in this work is to prove, adapting the techniques used in [
Barrios Begoña +2 more
doaj +1 more source
A sharpness result for powers of Besov functions
A recent result of Kateb asserts that f∈Bp,qs(ℝn) implies |f|μ∈Bp,qs(ℝn) as soon as the following three conditions hold: (1) 0≺s≺μ + (1/p), (2) f is bounded, (3) μ≻1. By means of counterexamples, we prove that those conditions are optimal.
Gérard Bourdaud, Jürgen Appell
wiley +1 more source
Hardy–Adams Inequalities on ℍ2 × ℝn-2
Let ℍ2{\mathbb{H}^{2}} be the hyperbolic space of dimension 2. Denote by Mn=ℍ2×ℝn-2{M^{n}=\mathbb{H}^{2}\times\mathbb{R}^{n-2}} the product manifold of ℍ2{\mathbb{H}^{2}} and ℝn-2(n≥3){\mathbb{R}^{n-2}(n\geq 3)}.
Ma Xing, Wang Xumin, Yang Qiaohua
doaj +1 more source
Simplified regularization using finite‐dimensional approximations in the setting of Hilbert scales has been considered for obtaining stable approximate solutions to ill‐posed operator equations. The derived error estimates using an a priori and a posteriori choice of parameters in relation to the noise level are shown to be of optimal order with ...
Santhosh George, M. Thamban Nair
wiley +1 more source
Orlicz norm inequalities for the composite operator and applications
In this article, we first prove Orlicz norm inequalities for the composition of the homotopy operator and the projection operator acting on solutions of the nonhomogeneous A-harmonic equation.
Ding Shusen, Bi Hui
doaj
Remarks on a nonlinear nonlocal operator in Orlicz spaces
We study integral operators Lu(χ)=∫ℝℕψ(u(x)−u(y))J(x−y)dy$\mathcal{L}u\left( \chi \right)=\int{_{_{\mathbb{R}}\mathbb{N}}\psi \left( u\left( x \right)-u\left( y \right) \right)J\left( x-y \right)dy}$of the type of the fractional p-Laplacian operator ...
Correa Ernesto, Pablo Arturo de
doaj +1 more source
Inequalities for Green's operator applied to the minimizers
In this paper, we prove both the local and global Lφ -norm inequalities for Green's operator applied to minimizers for functionals defined on differential forms in Lφ -averaging domains.
Ding Shusen, Agarwal Ravi
doaj
On functional reproducing kernels
We show that even if a Hilbert space does not admit a reproducing kernel, there could still be a kernel function that realizes the Riesz representation map.
Zhou Weiqi
doaj +1 more source
Sobolev's inequalities for Herz-Morrey-Orlicz spaces on the half space
We introduce Herz-Morrey-Orlicz spaces on the half space, and study the boundedness of the Hardy-Littlewood maximal operator. As an application, we establish Sobolev’s inequality for Riesz potentials of functions in such spaces, which is one of mixed ...
Y. Mizuta, T. Ohno, T. Shimomura
semanticscholar +1 more source

