Results 11 to 20 of about 99 (60)

Cauchy-Schwarz type inequalities and applications to numerical radius inequalities

open access: yes, 2020
We present new improvements of certain Cauchy–Schwarz type inequalities. As applications of the results obtained, we provide refinements of some numerical radius inequalities for Hilbert space operators. It is shown, among other inequalities, that if A ∈
F. Kıttaneh, H. Moradi
semanticscholar   +1 more source

New norm equalities and inequalities for certain operator matrices

open access: yes, 2020
We prove new norm equalities and inequalities for general n×n tridiagonal and antitridiagonal operator matrices, including pinching type inequalities for weakly unitarily invariant norms.
Watheq Bani-Domi   +2 more
semanticscholar   +1 more source

Joint numerical ranges: recent advances and applications minicourse by V. Müller and Yu. Tomilov

open access: yesConcrete Operators, 2020
We present a survey of some recent results concerning joint numerical ranges of n-tuples of Hilbert space operators, accompanied with several new observations and remarks.
Müller V., Tomilov Yu.
doaj   +1 more source

Fixed points of holomorphic mappings for domains in Banach spaces

open access: yesAbstract and Applied Analysis, Volume 2003, Issue 5, Page 261-274, 2003., 2003
We discuss the Earle‐Hamilton fixed‐point theorem and show how it can be applied when restrictions are known on the numerical range of a holomorphic function. In particular, we extend the Earle‐Hamilton theorem to holomorphic functions with numerical range having real part strictly less than 1.
Lawrence A. Harris
wiley   +1 more source

Operator inequalities via geometric convexity

open access: yesMathematical Inequalities & Applications, 2019
The main goal of this paper is to present new generalizations of some known inequalities for the numerical radius and unitarily invariant norms of Hilbert space operators.
M. Sababheh, H. Moradi, S. Furuichi
semanticscholar   +1 more source

Some new operator inequalities

open access: yes, 2020
In this article, we present some new inequalities for positive linear mappings that can be viewed as super multiplicative inequalities. As applications, we deduce some numerical radius inequalities.
M. Sababheh   +2 more
semanticscholar   +1 more source

Berezin number inequalities for operators

open access: yesConcrete Operators, 2019
The Berezin transform à of an operator A, acting on the reproducing kernel Hilbert space ℋ = ℋ (Ω) over some (non-empty) set Ω, is defined by Ã(λ) = 〉Aǩ λ, ǩ λ〈 (λ ∈ Ω), where k⌢λ=kλ‖kλ‖${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown ...
Bakherad Mojtaba, Garayev Mubariz T.
doaj   +1 more source

General numerical radius inequalities for matrices of operators

open access: yesOpen Mathematics, 2016
Let Ai ∈ B(H), (i = 1, 2, ..., n), and T=[0⋯0A1⋮⋰A200⋰⋰⋮An0⋯0] $ T = \left[ {\matrix{ 0 & \cdots & 0 & {A_1 } \cr \vdots & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {A_2 } & 0
Al-Dolat Mohammed   +3 more
doaj   +1 more source

Operators with minimal pseudospectra and connections to normality

open access: yes, 2020
This paper mainly studies the class of bounded linear operators A with minimal pseudospectra σε (A) = σ(A)+Dε for some ε > 0 , where σ(A) denotes the spectrum of A , and Dε denotes the open disk of radius ε centered at the origin.
Samir Raouafi
semanticscholar   +1 more source

A class of tridiagonal operators associated to some subshifts

open access: yesOpen Mathematics, 2016
We consider a class of tridiagonal operators induced by not necessary pseudoergodic biinfinite sequences. Using only elementary techniques we prove that the numerical range of such operators is contained in the convex hull of the union of the numerical ...
Hernández-Becerra Christian   +1 more
doaj   +1 more source

Home - About - Disclaimer - Privacy