Results 21 to 30 of about 48 (48)
Code generation approaches for parallel geometric multigrid solvers
Software development for applications in computational science and engineering has become complex in recent years. This is mainly due to the increasing parallelism and heterogeneity in modern computer architectures and to the more realistic physical and ...
Köstler Harald +5 more
doaj +1 more source
On approximation properties of some non-positive Bernstein-Durrmeyer type operators
In this paper we shall introduce a new type of Bernstein Durrmeyer operators which are not positive on the entire interval [0, 1]. For these operators we will study the uniform convergence on all continuous functions on [0, 1] as well as a result given ...
Vasian Bianca Ioana
doaj +1 more source
New aspects in polygroup theory
The aim of this paper is to compute the commutativity degree in polygroup’s theory, more exactly for the polygroup PG and for extension of polygroups by polygroups, obtaining boundaries for them.
Sonea Andromeda Cristina
doaj +1 more source
Joint numerical ranges: recent advances and applications minicourse by V. Müller and Yu. Tomilov
We present a survey of some recent results concerning joint numerical ranges of n-tuples of Hilbert space operators, accompanied with several new observations and remarks.
Müller V., Tomilov Yu.
doaj +1 more source
This paper deals with the existence, uniqueness and iterative approximations of solutions for the functional equations and system of functional equations arising in dynamic programming of multistage decision making processes in Banach spaces and complete
Deepmala, Agarwal Ravi P.
doaj +1 more source
Matrix weights and a maximal function with exponent 3/2
We build an example of a simple sparse operator for which its norm with scalar A 2 weight has linear estimate in [w]A2 ${\left[w\right]}_{{A}_{2}}$ , but whose norm in matrix setting grows at least as [W]A23/2 ${\left[W\right]}_{{\mathbf{A}}_{2}}^{3/2}$
Treil Sergei, Volberg Alexander
doaj +1 more source
Analysis of the energy decay of a viscoelasticity type equation
In this paper, we study the evolution of the energy density of a sequence of solutions of a problem related to a viscoelasticity model where the viscosity term is a pseudo-differential operator of order 2α with α ∈ (0, 1).
Atallah-Baraket Amel, Trabelsi Maryem
doaj +1 more source
Power vector inequalities for operator pairs in Hilbert spaces and their applications
This study explores the power vector inequalities for a pair of operators (B,C)\left(B,C) in a Hilbert space. By utilizing a Mitrinović-Pečarić-Fink-type inequality for inner products and norms, we derive various power vector inequalities.
Altwaijry Najla +2 more
doaj +1 more source
Berezin number inequalities for operators
The Berezin transform à of an operator A, acting on the reproducing kernel Hilbert space ℋ = ℋ (Ω) over some (non-empty) set Ω, is defined by Ã(λ) = 〉Aǩ λ, ǩ λ〈 (λ ∈ Ω), where k⌢λ=kλ‖kλ‖${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown ...
Bakherad Mojtaba, Garayev Mubariz T.
doaj +1 more source
Some inequalities for unitarily invariant norms of matrices
This article aims to discuss inequalities involving unitarily invariant norms. We obtain a refinement of the inequality shown by Zhan. Meanwhile, we give an improvement of the inequality presented by Bhatia and Kittaneh for the Hilbert-Schmidt norm ...
Wang Shaoheng, Zou Limin, Jiang Youyi
doaj

