Results 1 to 10 of about 555 (45)
Inequalities related to Bourin and Heinz means with a complex parameter [PDF]
A conjecture posed by S. Hayajneh and F. Kittaneh claims that given A, B positive matrices, 0≤t≤1, and any unitarily invariant norm the following inequality holds{triple vertical-rule fence}AtB1-t+BtA1-t{triple vertical-rule fence}≤{triple vertical-rule ...
Bottazzi, Tamara Paula+3 more
core +3 more sources
For a continuous and positive function ω (λ); λ> 0 and μ a positive measure on [0; ∞) we consider the following 𝒟-logarithmic integral transform𝒟ℒog(w,μ)(T):=∫0∞w(λ)1n(λ+Tλ)dμ(λ),\mathcal{D}\mathcal{L}og\left( {w,\mu } \right)\left( T \right): = \int_0 ...
Dragomir Silvestru Sever
doaj +1 more source
Further generalized refinement of Young’s inequalities for τ -mesurable operators
In this paper, we prove that if a, b > 0 and 0 ≤ v ≤ 1.
Ighachane Mohamed Amine+1 more
doaj +1 more source
In this paper we prove among others that, if (Aj)j=1,...,m are positive definite matrices of order n ≥ 2 and qj ≥ 0, j = 1, ..., m with ∑j=1mqj=1$$\sum\nolimits_{j = 1}^m {{q_j} = 1} $$, then 0≤11−mini∈{1,…,m}{qi}×[∑i=1mqi(1−qi)[det(Ai)]−1−2n+1∑1 ...
Dragomir Silvestru Sever
doaj +1 more source
The logarithmic mean of two convex functionals
The purpose of this paper is to introduce the logarithmic mean of two convex functionals that extends the logarithmic mean of two positive operators. Some inequalities involving this functional mean are discussed as well.
Raïssouli Mustapha, Furuichi Shigeru
doaj +1 more source
Some Jensen's Type Inequalities for Twice Differentiable Functions of Selfadjoint Operators in Hilbert Spaces [PDF]
Some Jensen’s type inequalities for twice differentiable functions of selfadjoint operators in Hilbert spaces under suitable assumptions for the involved operators are given.
Dragomir, Sever S
core +1 more source
Some integral inequalities for operator monotonic functions on Hilbert spaces
Let f be an operator monotonic function on I and A, B∈I (H), the class of all selfadjoint operators with spectra in I. Assume that p : [0.1], →ℝ is non-decreasing on [0, 1].
Dragomir Silvestru Sever
doaj +1 more source
Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces
For a continuous and positive function w (λ) , λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform 𝒟(w,μ)(T):=∫0∞w(λ)(λ+T)-1dμ(λ),\mathcal{D}\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda ...
Dragomir Silvestru Sever
doaj +1 more source
Refinements of numerical radius inequalities using the Kantorovich ratio
In this paper, we improve some numerical radius inequalities for Hilbert space operators under suitable condition. We also compare our results with some known results. As application of our result, we obtain an operator inequality.
Nikzat Elham, Omidvar Mohsen Erfanian
doaj +1 more source
Operator inequalities of Jensen type
We present some generalized Jensen type operator inequalities involving sequences of self-adjoint operators.
Moslehian M. S., Mićić J., Kian M.
doaj +1 more source