Results 11 to 20 of about 956 (81)

Multivariate Analogue of Slant Toeplitz Operators

open access: yesHacettepe Journal of Mathematics and Statistics, 2020
This paper discusses several structural and fundamental properties of the kth-order slant Toeplitz operators on the Lebesgue space of the ntorus Tn, for integers k ≥ 2 and n ≥ 1. We obtain certain equivalent conditions for the commutativity and essential
Gopal Datt, Shesh Kumar Pandey
semanticscholar   +1 more source

A lower bound in Nehari's theorem on the polydisc [PDF]

open access: yes, 2011
By theorems of Ferguson and Lacey (d=2) and Lacey and Terwilleger (d>2), Nehari's theorem is known to hold on the polydisc D^d for d>1, i.e., if H_\psi is a bounded Hankel form on H^2(D^d) with analytic symbol \psi, then there is a function \phi in L ...
H. Helson   +7 more
core   +3 more sources

On Determinant Expansions for Hankel Operators

open access: yesConcrete Operators, 2020
Let w be a semiclassical weight that is generic in Magnus’s sense, and (pn)n=0∞({p_n})_{n = 0}^\infty the corresponding sequence of orthogonal polynomials. We express the Christoffel–Darboux kernel as a sum of products of Hankel integral operators.
Blower Gordon, Chen Yang
doaj   +1 more source

Hyponormal Toeplitz operators with polynomial symbols on weighted Bergman spaces

open access: yesJournal of Inequalities and Applications, 2014
In this note we consider the hyponormality of Toeplitz operators Tφ on weighted Bergman space Aα2(D) with symbol in the class of functions f+g¯ with polynomials f and g.MSC:47B20, 47B35.
I. Hwang, Jongrak Lee, S. W. Park
semanticscholar   +2 more sources

Generalized Crofoot transform and applications

open access: yesConcrete Operators, 2023
Matrix-valued asymmetric truncated Toeplitz operators are compressions of multiplication operators acting between two model spaces. These are the generalization of matrix-valued truncated Toeplitz operators. In this article, we describe symbols of matrix-
Khan Rewayat, Farooq Aamir
doaj   +1 more source

Functions of self‐adjoint operators in ideals of compact operators

open access: yesJournal of the London Mathematical Society, Volume 95, Issue 1, Page 157-176, February 2017., 2017
Abstract For self‐adjoint operators A,B, a bounded operator J, and a function f:R→C, we obtain bounds in quasi‐normed ideals of compact operators for the difference f(A)J−Jf(B) in terms of the operator AJ−JB. The focus is on functions f that are smooth everywhere except for finitely many points. A typical example is the function f(t)=|t|γ with γ∈(0,1).
Alexander V. Sobolev
wiley   +1 more source

Mean Lipschitz spaces and a generalized Hilbert operator [PDF]

open access: yes, 2017
If $\mu $ is a positive Borel measure on the interval $[0, 1)$ we let $\mathcal H_\mu $ be the Hankel matrix $\mathcal H_\mu =(\mu _{n, k})_{n,k\ge 0}$ with entries $\mu _{n, k}=\mu _{n+k}$, where, for $n\,=\,0, 1, 2, \dots $, $\mu_n$ denotes the moment ...
Merchán, Noel
core   +2 more sources

Hyponormal Toeplitz operators on the Bergman space

open access: yes, 2017
A Hilbert space operator is hyponormal if T ∗T − TT ∗ is positive. We consider hyponormality of Toeplitz operators on the Bergman space with a symbol in the class of f + g where f is a monomial and g is a polynomial.
Houcine Sadraoui, M. Guediri
semanticscholar   +1 more source

Harmonic Hardy space and their operators

open access: yes, 2020
Let H2 be the Hardy space on the unit disk. For inner functions u and v , the harmonic Hardy space H2 u,v is defined by H 2 u,v = uH 2 ⊕ vzH2 . Assume one of u and v is a nonconstant, then H2 u,v is a proper closed subspace of L 2(∂D) . We can define the
Xuanhao Ding, Yueshi Qin, Yuanqi Sang
semanticscholar   +1 more source

Lipschitz estimates for the Berezin transform

open access: yesJournal of Function Spaces, Volume 8, Issue 2, Page 103-128, 2010., 2010
We consider the generalized Fock space A2(μm), where μm is the measure with weight e−|z|m, m > 0, with respect to the Lebesgue measure on Cn. Improving upon a recent result of L. Coburn and J. Xia, we show that for any bounded operator X on A2(μm) , the Berezin transform of X satisfies Lipschitz estimates.
Hélène Bommier-Hato, Miroslav Engliš
wiley   +1 more source

Home - About - Disclaimer - Privacy