Results 11 to 20 of about 382 (62)
A quantitative version of the commutator theorem for zero trace matrices [PDF]
Let $A$ be a $m\times m$ complex matrix with zero trace and let $\e>0$. Then there are $m\times m$ matrices $B$ and $C$ such that $A=[B,C]$ and $\|B\|\|C\|\le K_\e m^\e\|A\|$ where $K_\e$ depends only on $\e$.
Johnson, William B. +2 more
core +3 more sources
A note on commutators of strongly singular Calderón-Zygmund operators
In this article, the authors consider the commutators of strongly singular Calderón-Zygmund operator with Lipschitz functions. A sufficient condition is given for the boundedness of the commutators from Lebesgue spaces Lp(Rn){L}^{p}\left({{\mathbb{R ...
Zhang Pu, Zhu Xiaomeng
doaj +1 more source
Hyers-Ulam-Rassias Stability of Generalized Derivations [PDF]
The generalized Hyers--Ulam--Rassias stability of generalized derivations on unital Banach algebras into Banach bimodules is established.Comment: 9 pages, minor changes, to appear in Internat. J. Math.
Moslehian, Mohammad Sal
core +5 more sources
Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
Let ℋ{\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ(ℋ){\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ{\mathcal{ {\mathcal H} }}.
Mesbah Nadia +2 more
doaj +1 more source
Hyers-Ulam-Rassias stability of (m, n)-Jordan derivations
In this paper, we study the Hyers-Ulam-Rassias stability of (m,n)(m,n)-Jordan derivations. As applications, we characterize (m,n)(m,n)-Jordan derivations on C⁎{C}^{\ast }-algebras and some non-self-adjoint operator algebras.
An Guangyu, Yao Ying
doaj +1 more source
Functional equations related to higher derivations in semiprime rings
We investigate the additivity and multiplicativity of centrally extended higher derivations and show that every centrally extended higher derivation of a semiprime ring with no nonzero central ideals is a higher derivation.
Ezzat O. H.
doaj +1 more source
We extend the Putnam‐Fuglede theorem and the second‐degree Putnam‐Fuglede theorem to the nonnormal operators and to an elementary operator under perturbation by quasinilpotents. Some asymptotic results are also given.
Yin Chen
wiley +1 more source
Analysis of the energy decay of a viscoelasticity type equation
In this paper, we study the evolution of the energy density of a sequence of solutions of a problem related to a viscoelasticity model where the viscosity term is a pseudo-differential operator of order 2α with α ∈ (0, 1).
Atallah-Baraket Amel, Trabelsi Maryem
doaj +1 more source
Derivations on Banach algebras
Let D be a derivation on a Banach algebra; by using the operator D2, we give necessary and sufficient conditions for the separating ideal of D to be nilpotent. We also introduce an ideal M(D) and apply it to find out more equivalent conditions for the continuity of D and for nilpotency of its separating ideal.
S. Hejazian, S. Talebi
wiley +1 more source
Some versions of Anderson′s and Maher′s inequalities I
We prove the orthogonality (in the sense of Birkhoff) of the range and the kernel of an important class of elementary operators with respect to the Schatten p‐class.
Salah Mecheri
wiley +1 more source

