Results 31 to 40 of about 426 (56)
Large Deviations estimates for some non-local equations I. Fast decaying kernels and explicit bounds [PDF]
We study large deviations for some non-local parabolic type equations. We show that, under some assumptions on the non-local term, problems defined in a bounded domain converge with an exponential rate to the solution of the problem defined in the whole ...
Brändle, Cristina, Chasseigne, Emmanuel
core +2 more sources
The operator of double differentiation on a finite interval with Robin boundary conditions perturbed by the composition of a Volterra convolution operator and the differentiation one is considered.
Buterin, S. A., Rivero, A. E. Choque
core +1 more source
Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations [PDF]
We consider an initial-boundary value problem for $\partial_tu-\partial_t^{-\alpha}\nabla^2u=f(t)$, that is, for a fractional diffusion ...
Eriksson K.+2 more
core +1 more source
The purpose of this paper is to investigate the principal spectral theory and asymptotic behavior of the spectral bound for cooperative nonlocal dispersal systems, specifically focusing on the case where partial diffusion coefficients are zero, referred ...
Zhang Lei
doaj +1 more source
p-fractional Hardy–Schrödinger–Kirchhoff systems with critical nonlinearities
This paper deals with the existence of nontrivial solutions for critical Hardy–Schrödinger–Kirchhoff systems driven by the fractional p-Laplacian operator.
Fiscella Alessio+2 more
doaj +1 more source
Boundary regularity, Pohozaev identities, and nonexistence results
In this expository paper we survey some recent results on Dirichlet problems of the form $Lu=f(x,u)$ in $\Omega$, $u\equiv0$ in $\mathbb R^n\backslash\Omega$. We first discuss in detail the boundary regularity of solutions, stating the main known results
Ros-Oton, Xavier
core +1 more source
A note on global regularity for the weak solutions of fractional p-Laplacian equations
We consider a boundary value problem driven by the fractional p-Laplacian operator with a bounded reaction term. By means of barrier arguments, we prove H\"older regularity up to the boundary for the weak solutions, both in the singular (12) case.Comment:
Iannizzotto, Antonio+2 more
core +1 more source
Local behavior of fractional $p$-minimizers
We extend the De Giorgi-Nash-Moser theory to nonlocal, possibly degenerate integro-differential operators.Comment: 26 pages. To appear in Ann. Inst. H. Poincare Anal. Non Lineaire.
Di Castro, Agnese+2 more
core +1 more source
In this article, we deal with the following pp-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: M([u]s,Ap)(−Δ)p,Asu+V(x)∣u∣p−2u=λ∫RN∣u∣pμ,s*∣x−y∣μdy∣u∣pμ,s*−2u+k∣u∣q−2u,x∈RN,M({\left[u]}
Zhao Min+2 more
doaj +1 more source
Perturbations of Functional Inequalities for L\'evy Type Dirichlet Forms [PDF]
Perturbations of super Poincar\'e and weak Poincar\'e inequalities for L\'evy type Dirichlet forms are studied. When the range of jumps is finite our results are natural extensions to the corresponding ones derived earlier for diffusion processes; and we
Chen, Xin, Wang, Feng-Yu, Wang, Jian
core