Results 11 to 20 of about 45 (45)
On capacity and torsional rigidity
Abstract We investigate extremal properties of shape functionals which are products of Newtonian capacity cap(Ω¯), and powers of the torsional rigidity T(Ω), for an open set Ω⊂Rd with compact closure Ω¯, and prescribed Lebesgue measure. It is shown that if Ω is convex, then cap(Ω¯)Tq(Ω) is (i) bounded from above if and only if q⩾1, and (ii) bounded ...
M. van den Berg, G. Buttazzo
wiley +1 more source
Iterative approximation of a solution of a general variational‐like inclusion in Banach spaces
We introduce a class of η‐accretive mappings in a real Banach space and show that the η‐proximal point mapping for η‐m‐accretive mapping is Lipschitz continuous. Further, we develop an iterative algorithm for a class of general variational‐like inclusions involving η‐accretive mappings in real Banach space, and discuss its convergence criteria.
C. E. Chidume, K. R. Kazmi, H. Zegeye
wiley +1 more source
We introduce and study a class of general quasivariational‐like inequalities in Hilbert spaces, suggest two general algorithms, and establish the existence and uniqueness of solutions for these kinds of inequalities. Under certain conditions, we discuss convergence and stability of the three‐step iterative sequences generated by the algorithms.
Zeqing Liu +3 more
wiley +1 more source
A‐monotonicity and applications to nonlinear variational inclusion problems
A new notion of the A‐monotonicity is introduced, which generalizes the H‐monotonicity. Since the A‐monotonicity originates from hemivariational inequalities, and hemivariational inequalities are connected with nonconvex energy functions, it turns out to be a useful tool proving the existence of solutions of nonconvex constrained problems as well.
Ram U. Verma
wiley +1 more source
Nonlinear variational inequalities on reflexive Banach spaces and topological vector spaces
The purpose of this paper is to introduce and study a class of nonlinear variational inequalities in reflexive Banach spaces and topological vector spaces. Based on the KKM technique, the solvability of this kind of nonlinear variational inequalities is presented.
Zeqing Liu +2 more
wiley +1 more source
KKM theorem with applications to lower and upper bounds equilibrium problem in G‐convex spaces
We give some new versions of KKM theorem for generalized convex spaces. As an application, we answer a question posed by Isac et al. (1999) for the lower and upper bounds equilibrium problem.
M. Fakhar, J. Zafarani
wiley +1 more source
Existence results for general inequality problems with constraints
This paper is concerned with existence results for inequality problems of type F0(u; v) + Ψ′(u; v) ≥ 0, for all v ∈ X, where X is a Banach space, F : X → ℝ is locally Lipschitz, and Ψ : X → (−∞ + ∞] is proper, convex, and lower semicontinuous. Here F0 stands for the generalized directional derivative of F and Ψ′ denotes the directional derivative of Ψ.
George Dincă +2 more
wiley +1 more source
Completely generalized multivalued nonlinear quasi‐variational inclusions
We introduce and study a new class of completely generalized multivalued nonlinear quasi‐variational inclusions. Using the resolvent operator technique for maximal monotone mappings, we suggest two kinds of iterative algorithms for solving the completely generalized multivalued nonlinear quasi‐variational inclusions.
Zeqing Liu +3 more
wiley +1 more source
Mixed variational inequalities and economic equilibrium problems
We consider rather broad classes of general economic equilibrium problems and oligopolistic equilibrium problems which can be formulated as mixed variational inequality problems. Such problems involve a continuous mapping and a convex, but not necessarily differentiable function. We present existence and uniqueness results of solutions under weakened P‐
I. V. Konnov, E. O. Volotskaya
wiley +1 more source
Evolutionary quasi-variational and variational inequalities with constraints on the derivatives
This paper considers a general framework for the study of the existence of quasi-variational and variational solutions to a class of nonlinear evolution systems in convex sets of Banach spaces describing constraints on a linear combination of partial ...
Miranda Fernando +2 more
doaj +1 more source

