Results 1 to 10 of about 217 (68)
Bounded perturbation resilience of extragradient-type methods and their applications. [PDF]
In this paper we study the bounded perturbation resilience of the extragradient and the subgradient extragradient methods for solving variational inequality (VI) problem in real Hilbert spaces. This is an important property of algorithms which guarantees
Dong QL, Gibali A, Jiang D, Tang Y.
europepmc +5 more sources
A fractional Kirchhoff problem involving a singular term and a critical nonlinearity [PDF]
In this paper, we consider the following critical nonlocal problem:
Fiscella Alessio
doaj +2 more sources
Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems
In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth.
Ding Yanheng, Yu Yuanyang, Dong Xiaojing
doaj +1 more source
The main purpose is to establish the variational structure of a fourth-order ordinary differential system with both instantaneous and non-instantaneous impulses.
Xia Minggang+2 more
doaj +1 more source
Multiplicity and minimality of periodic solutions to fourth-order super-quadratic difference systems
In this article, we use the Nehari manifold method to study a class of fourth-order even difference systems. First, we show that there exist multiple periodic solutions to the non-autonomous system.
Ling Rumin+3 more
doaj +1 more source
This paper presents some variants of minimal point theorem together with corresponding variants of Ekeland variational principle. In the second part of this article, there is a discussion on Ekeland variational principle and minimal point theorem ...
Meghea Irina, Stamin Cristina Stefania
doaj +1 more source
The concentration-compactness principles for Ws,p(·,·)(ℝN) and application
We obtain a critical imbedding and then, concentration-compactness principles for fractional Sobolev spaces with variable exponents. As an application of these results, we obtain the existence of many solutions for a class of critical nonlocal problems ...
Ho Ky, Kim Yun-Ho
doaj +1 more source
Small perturbations of critical nonlocal equations with variable exponents
In this article, we are concerned with the following critical nonlocal equation with variable exponents: (−Δ)p(x,y)su=λf(x,u)+∣u∣q(x)−2uinΩ,u=0inRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u&
Tao Lulu, He Rui, Liang Sihua
doaj +1 more source
A Ky Fan minimax inequality for quasiequilibria on finite dimensional spaces [PDF]
Several results concerning existence of solutions of a quasiequilibrium problem defined on a finite dimensional space are established. The proof of the first result is based on a Michael selection theorem for lower semicontinuous set-valued maps which ...
Castellani, Marco+2 more
core +2 more sources
A minimax problem for sums of translates on the torus
Abstract We extend some equilibrium‐type results first conjectured by Ambrus, Ball and Erdélyi, and then proved recenly by Hardin, Kendall and Saff. We work on the torus T≃[0,2π), but the motivation comes from an analogous setup on the unit interval, investigated earlier by Fenton.
Bálint Farkas+2 more
wiley +1 more source