Results 21 to 30 of about 182 (54)

Rotationally invariant periodic solutions of semilinear wave equations

open access: yesAbstract and Applied Analysis, Volume 3, Issue 1-2, Page 171-180, 1998., 1998
Under suitable conditions we are able to solve the semilinear wave equation in any dimension. We are also able to compute the essential spectrum of the linear wave operator for the rotationally invariant periodic case.
Martin Schechter
wiley   +1 more source

Multiple solutions for a class of fractional equations [PDF]

open access: yes, 2015
In this paper we study a class of fractional Laplace equations with asymptotically linear right-hand side. The existence results of three nontrivial solutions under the resonance and non-resonance conditions are established by using the minimax method ...
Ma, Caochuan   +2 more
core   +2 more sources

Nonlinear equations involving the square root of the Laplacian

open access: yes, 2018
In this paper we discuss the existence and non-existence of weak solutions to parametric fractional equations involving the square root of the Laplacian $A_{1/2}$ in a smooth bounded domain $\Omega\subset \mathbb{R}^n$ ($n\geq 2$) and with zero Dirichlet
Ambrosio, Vincenzo   +2 more
core   +5 more sources

A multiplicity result for a fractional Kirchhoff equation in $\mathbb{R}^{N}$ with a general nonlinearity

open access: yes, 2017
In this paper we deal with the following fractional Kirchhoff equation \begin{equation*} \left(p+q(1-s) \iint_{\mathbb{R}^{2N}} \frac{|u(x)- u(y)|^{2}}{|x-y|^{N+2s}} \, dx\,dy \right)(-\Delta)^{s}u = g(u) \mbox{ in } \mathbb{R}^{N}, \end{equation*} where
Ambrosio, Vincenzo, Isernia, Teresa
core   +1 more source

Semilinear problems for the fractional laplacian with a singular nonlinearity [PDF]

open access: yes, 2015
The aim of this paper is to study the solvability of the problem (-Δ)s u = F(x,u) := λ f(x)/uγ + Mup in ω u > 0 in ω, u = 0 in RN \ ω, where Ω is a bounded smooth domain of RN, N > 2s, M ε {0, 1}, 0 0, λ > 0, p > 1 and f is a nonnegative function.
Barrios, B.   +3 more
core   +2 more sources

On mountain pass theorem and its application to periodic solutions of some nonlinear discrete systems

open access: yes, 2018
We obtain a new quantitative deformation lemma, and then gain a new mountain pass theorem. More precisely, the new mountain pass theorem is independent of the functional value on the boundary of the mountain, which improves the well known results (\cite ...
Ding, Liang   +2 more
core   +1 more source

Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions

open access: yesAdvances in Nonlinear Analysis
Let Ω⊂Rn\Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q∈]0,1[q\in ]0,1{[}, α∈L∞(Ω)\alpha \in {L}^{\infty }\left(\Omega ), with α>0\alpha \gt 0, and k∈Nk\in {\bf{N}}
Ricceri Biagio
doaj   +1 more source

Variational Principles for Monotone and Maximal Bifunctions [PDF]

open access: yes, 2003
2000 Mathematics Subject Classification: 49J40, 49J35, 58E30, 47H05We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces.
Chbani, Zaki, Riahi, Hassan
core  

Concentration-compactness at the mountain pass level in semilinear elliptic problems

open access: yes, 2007
The concentration compactness framework for semilinear elliptic equations without compactness, set originally by P.-L.Lions for constrained minimization in the case of homogeneous nonlinearity, is extended here to the case of general nonlinearities in ...
TIntarev, Kyril
core   +2 more sources

Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth

open access: yesAdvances in Nonlinear Analysis
We study the following fractional Kirchhoff-Choquard equation: a+b∫RN(−Δ)s2u2dx(−Δ)su+V(x)u=(Iμ*F(u))f(u),x∈RN,u∈Hs(RN),\left\{\begin{array}{l}\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{\left|{\left(-\Delta )}^{\frac{s}{2}}u\right|}
Yang Jie, Chen Haibo
doaj   +1 more source

Home - About - Disclaimer - Privacy